matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungTangete durch den Ursprung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Tangete durch den Ursprung
Tangete durch den Ursprung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangete durch den Ursprung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 Mo 14.08.2006
Autor: Fuffi

Aufgabe
Ich stehe bei einer eigentlich leichten Aufgabe (dachte ich) total auf dem Schlauch. Hier die Aufage:

Gegeben ist die Funktion f mit [mm] f(x)=1/8(x^2-8x+36). [/mm] Bestimme alle Punkte B des Funktionsgraphen, sodass die Tangente an den Graphen von f im Punkt B durch den Koordinatenursrung verläuft.  

Ich weiß das die Tangete (y=mx+b) kein absolutes Glied hat. Deshalb dachte ich einfach Gleichsetzen mit der Funktion und fertig. Aber ich sitzte da schon über eine halbe Stunde dran und komm nicht weiter. Habe ein Brett vorm Kopf. Danke für jeden Tipp!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tangete durch den Ursprung: 2 Ansätze
Status: (Antwort) fertig Status 
Datum: 13:50 Mo 14.08.2006
Autor: statler

Hallo Fuffi und [willkommenmr]

> Ich stehe bei einer eigentlich leichten Aufgabe (dachte
> ich) total auf dem Schlauch. Hier die Aufage:
>  
> Gegeben ist die Funktion f mit [mm]f(x)=1/8(x^2-8x+36).[/mm]

Soll wahrscheinlich heißen [mm] f(x)=(1/8)*(x^2-8x+36) [/mm]

> Bestimme alle Punkte B des Funktionsgraphen, sodass die
> Tangente an den Graphen von f im Punkt B durch den
> Koordinatenursrung verläuft.
> Ich weiß das die Tangete (y=mx+b) kein absolutes Glied hat.

Also heißt sie y = mx, wobei m gesucht wird.
Jetzt kannst du z. B. die Schnittpunkte mit der Funktion berechnen, die aber irgendwie von m abhängen. Das gibt 0, 1 oder 2 Schnittpunkte. Du suchst die m's mit einem Schnittpunkt, es sollte 2 davon geben.

> Deshalb dachte ich einfach Gleichsetzen mit der Funktion
> und fertig. Aber ich sitzte da schon über eine halbe Stunde
> dran und komm nicht weiter. Habe ein Brett vorm Kopf. Danke
> für jeden Tipp!

Andere Variante: Du nimmst einen allgemeinen Punkt P = [mm] (x_{p}|y_{p}) [/mm] auf dem Graphen und bestimmst die Gleichung der Tang. in diesem Punkt. Die hat einen von [mm] x_{p} [/mm] abhängigen y-Achsen-Abschnitt. Und dann suchst du die [mm] x_{p}, [/mm] für die dieser Abschnitt 0 wird.

Jetzt bist du dran!

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]