matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesTangentialkegel /polarer Kegel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Tangentialkegel /polarer Kegel
Tangentialkegel /polarer Kegel < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentialkegel /polarer Kegel: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:33 Di 03.02.2009
Autor: Irmchen

Hallo alle zusammen!

Ich habe ein Problem mit dem Begriff des polaren Kegels ...  
Nach der Definition ist zu einer Menge [mm] C \subset \mathbb R^n [/mm]  der polare Kegel als [mm] C^p := \{ x \in \mathbb R^n \ | \ x^T z \le 0 \ \forall z \in C \} [/mm] definiert. Falls C ein konvexer Kegel ist, nennt man
[mm] C^D := - C^p [/mm] den dualen Kegel.

Wenn ich das Beispiel betrachte:

[mm] C := \{ x \in \mathbb R^2 \ | \ \| x - {1 \choose 0} \|_2 = 1 \} [/mm]
[mm] C^p = \{ x \in \mathbb R^2 \ | \ x_1 \le 0, x_2 = 0 \} [/mm]

Graphisch ist die Menge C eine Kreis mit Mittelpunkt  [mm] {1 \choose 0 } [/mm] und Radius 1. Der polare Kegel ist die negative x - Achse .
Der Tangentialkegel ist wohl die y Achse, aber warum???

Wenn wir das nun im Zusammenhang mit dem Tangentialkegel betrachten, dann habe ich leider richtige Verständnisproblem.

Wie kann ich mir den folgende Sachverhalt vorstellen:

Wenn die Memge C konvex ist und [mm] \overline{x} \in C [/mm], so ist
[mm] T(C, \overline{x}) = \overline{ \mathbb R_+ ( C - \overline{x}} = \overline{ \{ t ( x - \overline{x} ) \| \ x \in C \} } [/mm]

[mm]( T( C; \overline{x} ) )^p = \{ s \ | \ s^T (x - \overline{x} ) \le 0 \ \forall x \in C \} [/mm] ist der Normale Kegel von C.

Der Tangentialkegel ist ja grob gesprochen die Menge der Richtungen, mit denen Man sich [mm] \overline{x} [/mm] nähren kann.
Aber wie stellt man sich [mm] ( T( C; \overline{x} ) )^p [/mm] vor?

Und zum Schluss kommt dann der folgende Satz, der besagt, dass wenn f konvex und differentierbar ist und C konvex ein Punkt [mm] \overline{x} \in C [/mm] genau dann ein Minimum ist auf C, wenn
[mm] \nabla f( \overline{x} ) \in - ( T( C; \overline{x} ) )^p [/mm].

Warum?

Ich hoffe sehr,dass mir jemand ein wenig der Sachverhalt erklären kann!

Viele herzlichen Dank!

Viele Grüße
Irmchen

        
Bezug
Tangentialkegel /polarer Kegel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mi 11.02.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]