Tangentialebene < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:19 Mo 14.01.2008 | Autor: | vvvektor |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo, ich möchte die Gleichungen der Tangentialebenen an die Kugel K ermitteln, die zur Ebene E parallel sind.
K(x)=( [mm] x_{1}-5)^2 +(x_{2}-5)^2+(x_{3}-3)^2 [/mm] =6
[mm] E(x)=x_{1}+x_{2}+x_{3}=4
[/mm]
M ist also (5; 5; 3) und r=6
Ich muss die hessesche Normalenform der Ebene bilden, die durch den
Mittelpunkt der Kugel verläuft und parallel zu E ist.
Weshalb soll ich die hessesche normalenform bilden? Und wehalb kommt dies heraus? :
[mm] \bruch{1}{\wurzel{3}}x_{1}+\bruch{1}{\wurzel{3}}x_{2}+\bruch{1}{\wurzel{3}}x_{3} [/mm] - [mm] \bruch{13}{\wurzel{3}} [/mm] ? Den ersten Teil verstehe ich(aus welchem grund es [mm] \bruch{1}{\wurzel{3}} [/mm] ist, den Teil hinter dem - aber nicht also: - [mm] \bruch{13}{\wurzel{3}}.
[/mm]
Es wurde hier das Skalar von (1;1;1) mit (5;5;3) und mit [mm] \bruch{1}{\wurzel{3}} [/mm] multipliziert genommen, doch weshalb überhaupt dieser anhang??
Danke
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:52 Mo 14.01.2008 | Autor: | Zneques |
Hallo,
Erstmal eine Kleinigkeit vorweg : [mm] r^2=6 [/mm] d.h. [mm] r=\wurzel{6}
[/mm]
Die hessesche Normalenform hat den Vorteil, dass der Normalenvektor bereits normiert ist. Somit kann man die Ebene leichter um eine bestimmte Länge verschieben, bzw. Abstände berechnen.
Um diese Form zu finden muss man die Länge des Normalenvektor (die Koeffizieten der Variablen) berechen.
[mm] L(\vec{n})=\wurzel{3}
[/mm]
Somit ist [mm] \bruch{1}{\wurzel{3}}*\vec{n} [/mm] normiert auf Länge 1.
Die neue Ebenengleichung ist also die alte multipliziert mit [mm] \bruch{1}{\wurzel{3}} [/mm] :
[mm] \bruch{1}{\wurzel{3}}x_{1}+\bruch{1}{\wurzel{3}}x_{2}+\bruch{1}{\wurzel{3}}x_{3}=\bruch{4}{\wurzel{3}}
[/mm]
Das ist jetzt immernoch die selbe Ebene wie zu Beginn.
Jetzt müssen wir diese verschieben.
Dazu brauchen wir die Länge der Verschiebung. Die ist der Abstand zwischen dem Zielpunkt und der Ebene. Also [mm] d(M,E)=\bruch{\vec{n}*(\vektor{5\\5\\3}-\vektor{x_1\\x_2\\x_3})}{L(\vec{n})}=\bruch{13-4}{\wurzel{3}}
[/mm]
(Das wäre auch mit [mm] \bruch{5}{\wurzel{3}}+\bruch{5}{\wurzel{3}}+\bruch{3}{\wurzel{3}}-\bruch{4}{\wurzel{3}} [/mm] gegangen)
Die Ebene durch den Mittelpunkt der Kugel ist also :
[mm] \bruch{1}{\wurzel{3}}x_{1}+\bruch{1}{\wurzel{3}}x_{2}+\bruch{1}{\wurzel{3}}x_{3}=\bruch{4}{\wurzel{3}}+\bruch{13-4}{\wurzel{3}}=\bruch{13}{\wurzel{3}}
[/mm]
Um die Tangentialebenen zu erhalten musst du natülich nochmal verschieben.
Ciao.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:55 Mo 14.01.2008 | Autor: | vvvektor |
> Jetzt müssen wir diese verschieben.
> Dazu brauchen wir die Länge der Verschiebung. Die ist der
> Abstand zwischen dem Zielpunkt und der Ebene. Also
> [mm]d(M,E)=\bruch{\vec{n}*(\vektor{5\\5\\3}-\vektor{x_1\\x_2\\x_3})}{L(\vec{n})}=\bruch{13-4}{\wurzel{3}}[/mm]
> (Das wäre auch mit
> [mm]\bruch{5}{\wurzel{3}}+\bruch{5}{\wurzel{3}}+\bruch{3}{\wurzel{3}}-\bruch{4}{\wurzel{3}}[/mm]
> gegangen)
Den schritt verstehe ich noch nicht. Was bedeutet die Rechnung? [mm]d(M,E)=\bruch{\vec{n}*(\vektor{5\\5\\3}-\vektor{x_1\\x_2\\x_3})}{L(\vec{n})}=\bruch{13-4}{\wurzel{3}}[/mm] oder dieses (Das wäre auch mit
> [mm]\bruch{5}{\wurzel{3}}+\bruch{5}{\wurzel{3}}+\bruch{3}{\wurzel{3}}-\bruch{4}{\wurzel{3}}[/mm]
> gegangen)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:04 Di 15.01.2008 | Autor: | Zneques |
Es geht darum herrauszufinden wie wir die Ebene verschieben müssen.
So gilt z.B. dass
[mm] \bruch{x_1}{\wurzel{3}}+\bruch{x_2}{\wurzel{3}}+\bruch{x_3}{\wurzel{3}}=0
[/mm]
parallel zu E ist und durch [mm] \vektor{0\\0\\0} [/mm] geht.
[mm] \bruch{x_1}{\wurzel{3}}+\bruch{x_2}{\wurzel{3}}+\bruch{x_3}{\wurzel{3}}=\bruch{4}{\wurzel{3}} [/mm]
ist E und hat einen Abstand von [mm] \bruch{4}{\wurzel{3}} [/mm] zu [mm] \vektor{0\\0\\0}. [/mm] Das heißt die Ebenen haben einen Abstand von [mm] \bruch{4}{\wurzel{3}}.
[/mm]
Somit kann man, wenn man weiß wieweit man verschieben möchte, dies recht einfach einsetzen.
Der Abstand des Punktes, der auf der neuen Ebene liegen soll, von der Ebene ist also das was wir brauchen.
M=Mittelpkt. des Kreises, P=ein Punkt auf der Ebene, [mm] \vec{n}=Normalenvektor [/mm] der Ebene
dann gilt : [mm] Abstand(M,E)=\bruch{\vec{n}*\overrightarrow{PM}}{Laenge(\vec{n})} [/mm] , Das ist diese Rechnung.
Wenn man jedoch eine Ebene in hessesche Normalenform gegeben hat kann man den Abstand direkter berechnen.
Es gilt : [mm] Abstand(M,E)=\bruch{m_1}{\wurzel{3}}+\bruch{m_2}{\wurzel{3}}+\bruch{m_3}{\wurzel{3}}-\bruch{4}{\wurzel{3}}
[/mm]
In beiden Fällen erhalten wir [mm] Abstand=\bruch{13-4}{\wurzel{3}}.
[/mm]
D.h. wenn wir E um [mm] \bruch{13-4}{\wurzel{3}} [/mm] verschieben, geht die Ebene durch M.
Ciao.
|
|
|
|