matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungTangentensteigung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Tangentensteigung
Tangentensteigung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentensteigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 So 27.04.2008
Autor: AbraxasRishi

Aufgabe
f(x) = [mm] \bruch{1}{5}\wurzel{400-16x^2} x \in [-5;5] [/mm]

Bestimmen Sie näherungsweise die Tangentensteigung an den Stellen -4; -3; -2; -1.

Hallo!

Diese Grundlage der Differenzialrechnung bereitet mir Schwierigkeiten.
Wie kann man eigentlich beim Vergrößern eines Graphen feststellen ob eine kleine Stelle  durch eine Tangente ersetzbar ist?

z.B.

f(x) = sin x  bei x0 = 1,5

schnittweite 0,1   (x =1,4 ;  f(x)= 0,985),(x=1,5 ; f(x) = 0,997),(x =1,6 ; f(x) = 0,999)

schnittweite 0,001(x = 1,499 ; f(x) = 0,997424),(x =1,500 ; f(x) = 0,997495) : ( x = 1,5001 ; f(x) =0,997565)

Hier z.B. ändert sich mit der Schnittweite auch der f(x) - Wert um einige Dezimalstellen. Heißt das, dass dieser Punkt nicht durch eine Tangente ersetzbar ist?

Aber zurück zur Aufgabe! Meine Ansätze sind:

Tangentengleichung formulieren:

t(x) = mx +b
5 = m*(-4)+b
b = -m*4+5
t(x) = +5+m(x-4)

Sekantensteigung als Näherungswert für Tangentensteigungen:

x2 - x1 = -3,5 - (-4,5) = 1

x1 und x2 in die Funktion einsetzen, ich erhalte:

f(x1) = 2,8565
f(x2) = 1,743559


[mm] \bruch{f(x2) - f(x1)}{x2-x1} [/mm]

Erhaltenen Wert in die Tangentengleichung einsetzen:

t(x) = 5 +(1,11294)*(x-4)

Sollte 1,11294 nich ein Näherungswert für die Tangentensteigung durch Punkt (-4;5) sein?

Als Lösung für die Stelle -4 ist jedoch 1,067 angegeben. Was mach ich falsch?

Könnte mir bitte jemand den Lösungsweg für die Ermittlung der Tangentensteigung schrittweise erklären?

Vielen Dank im Voraus

Gruß

Angelika


        
Bezug
Tangentensteigung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:02 So 27.04.2008
Autor: rabilein1

Das ist irgendwie alles verwirrend.

In deiner Ursprungsaufgabe steht eine Wurzel - dafür könntest du schreiben: hoch ein Halb. Und dann die Kettenregel anwenden, um die erste Ableitung zu erhalten.

Und da setzt du dann -4 , -3 etc. ein, und siehst, wie groß die Steigung an den entsprechenden Stellen ist.

Die Sache mit dem Sinus hat mit der Aufgabe nichts zu tun und verwirrt nur.
Auch das [mm] x\in [/mm] ...  in der Aufgabenstellung ist mehr verwirrend als hilfreich

Bezug
        
Bezug
Tangentensteigung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 So 27.04.2008
Autor: Andi

Hallo Angelika,

>  Wie kann man eigentlich beim Vergrößern eines Graphen
> feststellen ob eine kleine Stelle  durch eine Tangente
> ersetzbar ist?

Wenn du an einen Punkt des Graphen eindeutig eine Tangenten legen kannst, dann ist der Graph in einer kleinen Umgebung dieses Punktes durch eine Tangente aproximierbar (annäherbar, ersetzbar ....)
  

> z.B.
>  
> f(x) = sin x  bei x0 = 1,5

> schnittweite 0,1   (x =1,4 ;  f(x)= 0,985),(x=1,5 ; f(x) =

> 0,997),(x =1,6 ; f(x) = 0,999)
>  
> schnittweite 0,001(x = 1,499 ; f(x) = 0,997424),(x =1,500 ;
> f(x) = 0,997495) : ( x = 1,5001 ; f(x) =0,997565)
>  
> Hier z.B. ändert sich mit der Schnittweite auch der f(x) -
> Wert um einige Dezimalstellen. Heißt das, dass dieser Punkt
> nicht durch eine Tangente ersetzbar ist?

Doch man kann die Sinusfunktion hier mit einer Gerade annähern,
aber natürlich ist die Aproximation umso genauer, je kleiner die Schnittweite ist.

  

> Aber zurück zur Aufgabe! Meine Ansätze sind:
>  
> Tangentengleichung formulieren:

Laut Aufgabenstellung brauchst du die Tangentengleichung nicht.
Es ist nur nach der Tangentensteigung gefragt.
  

> t(x) = mx +b
>  5 = m*(-4)+b

Wo kommt hier die 5 her? f(-4)=2,4

>  b = -m*4+5
>  t(x) = +5+m(x-4)
>  
> Sekantensteigung als Näherungswert für
> Tangentensteigungen:

Falls du schon ableiten kannst, könntest du auch die
Tangentensteigung exakt angeben.
  

> x2 - x1 = -3,5 - (-4,5) = 1
>  
> x1 und x2 in die Funktion einsetzen, ich erhalte:
>  
> f(x1) = 2,8565
>  f(x2) = 1,743559
>  

[ok]

> [mm]\bruch{f(x2) - f(x1)}{x2-x1}[/mm]

[mm]\bruch{f(x2) - f(x1)}{x2-x1}=1,16[/mm]
  

> Erhaltenen Wert in die Tangentengleichung einsetzen:
>  
> t(x) = 5 +(1,11294)*(x-4)

Ich erhalte für die Tangentensteigung ca. 1,16
  

> Sollte 1,11294 nich ein Näherungswert für die
> Tangentensteigung durch Punkt (-4;5) sein?

Der Punkt (-4;5) liegt nicht auf dem Graphen von f.
Aber wenn er darauf liegen würde, wäre das ein Näherungswert der Tangentensteigung.
  

> Als Lösung für die Stelle -4 ist jedoch 1,067 angegeben.
> Was mach ich falsch?

Nichts .... es war alles richtig. Der Näherungswert 1,067 ist ziemlich genau
der exakte Wert. Das heißt, du musst deine Schnittweite kleiner wählen,
um diesen Wert zu erreichen.

Oder du berechnest die Ableitfunktion f' (falls du das kannst), dann ist
deine Tangentensteigung m=f'(-4)

Viele Grüße,
Andi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]