matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesTangentengleichungsbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Sonstiges" - Tangentengleichungsbestimmung
Tangentengleichungsbestimmung < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentengleichungsbestimmung: Korrektur, Tipps
Status: (Frage) beantwortet Status 
Datum: 19:47 Sa 06.10.2012
Autor: timelord

Aufgabe
Gegeben ist die Funktion [mm] f(x)=\bruch{1}{4}x^{4}. [/mm] Bestimme die Gleichung der Tangenten vom Punkt A(1/0) (nicht auf dem Graph) an den Graphen der Funktion.

Gegebend: f(x)= [mm] \bruch{1}{4}x^{4} [/mm]
Rechnung: [mm] f'(x)=\limes_{h\rightarrow\0}\bruch{f(x_{0}+h)-f(x_{0})}{h} [/mm]
                        [mm] =\limes_{h\rightarrow\0}\bruch{f(1+h)-f(1)}{h} [/mm]
                        [mm] =\limes_{h\rightarrow\0}\bruch{\bruch{1}{4}(1+h)^{4}-\bruch{1}{4}(1)^{4}}{h} [/mm]
                        [mm] =\limes_{h\rightarrow\0}\bruch{\bruch{1}{4}+\bruch{1}{4}h^{4}-\bruch{1}{4}}{h} [/mm]
                        [mm] =\limes_{h\rightarrow\0}\bruch{\bruch{1}{4}h^{4}}{h} [/mm]
                        [mm] =\limes_{h\rightarrow\0}\bruch{h(\bruch{1}{4}h^{3})}{h} [/mm]
                        [mm] =\limes_{h\rightarrow\0}\bruch{1}{4}h^{3} [/mm]
                        =0
limes:h gegen 0 (die Null steht in der Rechnung nicht hinter dem Pfeil).
Als ich die Parabel skizziert habe, wusste ich, dass die Tangente eine Steigung m>0 haben muss, aber ich kann meinen Fehler nicht finden. Es könnte auch sein, dass mein Ansatz falsch ist. Bitte keine vollständigen Rechnungen, nur Tipps oder Korrekturen zu Ansatz und Rechnung. Danke!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tangentengleichungsbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Sa 06.10.2012
Autor: MathePower

Hallo timelord,


[willkommenmr]



> Gegeben ist die Funktion [mm]f(x)=\bruch{1}{4}x^{4}.[/mm] Bestimme
> die Gleichung der Tangenten vom Punkt A(1/0) (nicht auf dem
> Graph) an den Graphen der Funktion.
>  Gegebend: f(x)= [mm]\bruch{1}{4}x^{4}[/mm]
>  Rechnung:
> [mm]f'(x)=\limes_{h\rightarrow\0}\bruch{f(x_{0}+h)-f(x_{0})}{h}[/mm]
>                          
> [mm]=\limes_{h\rightarrow\0}\bruch{f(1+h)-f(1)}{h}[/mm]
> [mm]=\limes_{h\rightarrow\0}\bruch{\bruch{1}{4}(1+h)^{4}-\bruch{1}{4}(1)^{4}}{h}[/mm]
> [mm]=\limes_{h\rightarrow\0}\bruch{\bruch{1}{4}+\bruch{1}{4}h^{4}-\bruch{1}{4}}{h}[/mm]
>                          
> [mm]=\limes_{h\rightarrow\0}\bruch{\bruch{1}{4}h^{4}}{h}[/mm]
>                          
> [mm]=\limes_{h\rightarrow\0}\bruch{h(\bruch{1}{4}h^{3})}{h}[/mm]
>                          
> [mm]=\limes_{h\rightarrow\0}\bruch{1}{4}h^{3}[/mm]
>                          =0
>  limes:h gegen 0 (die Null steht in der Rechnung nicht
> hinter dem Pfeil).
>  Als ich die Parabel skizziert habe, wusste ich, dass die
> Tangente eine Steigung m>0 haben muss, aber ich kann meinen
> Fehler nicht finden. Es könnte auch sein, dass mein Ansatz
> falsch ist. Bitte keine vollständigen Rechnungen, nur
> Tipps oder Korrekturen zu Ansatz und Rechnung. Danke!


Zunächst ist doch  der Punkt (1|0) gegeben, der auf der Tangente liegt.

Dann weisst Du daß  der Punkt [mm]\left(x_{0}\left | \right f\left(x_{0}\right) \ \right)[/mm]
auf der Tangente mit Steigung [mm]f'\left(x_{0}\right)[/mm] liegt.

Damit sollte der Punkt [mm]x_{0}[/mm] ermittelt werden können.


>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Tangentengleichungsbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 Sa 06.10.2012
Autor: timelord

Hallo Mathe Power,

Vielen Dank für deine Antwort. Deinen Gedankengang verstehe ich. Leider kann ich keine vernünftige Gleichung zur Ermittelung des Punktes [mm] x_{0} [/mm] aufstellen. Könntest du mir hier vllt. noch mal einen kleinen Ansatz geben?
Danke!

Gr. timelord

Bezug
                        
Bezug
Tangentengleichungsbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Sa 06.10.2012
Autor: Steffi21

Hallo,

du hast die Funktion [mm] f(x)=\bruch{1}{4}x^4, [/mm] die Tangente t(x)=m*x+n und den Punkt (1;0), es gilt

(1) [mm] \bruch{1}{4}x^4=m*x+n [/mm]
(2) [mm] x^3=m [/mm]
(3) 0=m+n somit n=-m

setze (2) und (3) in (1) ein

[mm] \bruch{1}{4}x^4=x^3*x-x^3 [/mm]

[mm] \bruch{1}{4}x^4=x^4-x^3 [/mm]

[mm] 0=\bruch{3}{4}x^4-x^3 [/mm]

[mm] 0=x^3*(\bruch{3}{4}x-1) [/mm]

du bekommst die Stellen [mm] x_1=0 [/mm] und [mm] x_2=\bruch{4}{3} [/mm]

Steffi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]