matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungTangentenberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Tangentenberechnung
Tangentenberechnung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentenberechnung: aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:47 Do 17.04.2008
Autor: kunststoff

Aufgabe
Die Aufgabe lautet:
f(x)=1/5x(hoch2)+2

a)Berechne die Tangente an f(x) an der Stelle x0=1
b)Berechne die Tangente an f(x) vom Punkt (01) aus.


bitte um genaue erklärung.
Schon mal Danke im Vorraus!

lg

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[Hier gibst du bitte die direkten Links zu diesen Fragen an.]

        
Bezug
Tangentenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Do 17.04.2008
Autor: M.Rex

Hallo

Generell suchst du ja geraden der Form t(x)=mx+n, du brauchst also zwie Bedingungen, um die Variablem m und n zu bestimmen.


zu a)

Hier hast du ja einen Punkt auf dem Graphen von f gegeben, nämlich P(1/f(1))
(f(1) ist noch zu berechnen)
Dieser liegt ja auch auf t.

Jetzt weisst du, das die Steigung m der Geraden identisch mit der des Funktion f an der Stelle [mm] x_{0}=1 [/mm] ist. Die Steigung von f an dieser telle bestimmst du mit der 1. Ableitung, also f'(1).

Somit gilt: m=f'(1)

Also: t(x)=f'(1)*x+n

Bleibt noch, n zu bestimmen: Hier brauchst du den Punkt P. Da diese auf der Geraden liegt, gilt:

[mm] \overbrace{f(1)}^{=t(1)}=m*1+n [/mm]
mit der Bedingung für m kannst du daraus das n bestimmen, und somit die Tangente.

zu b).

Hier wird es etwas komplizierter, da der gegebene Punkt nicht auf f liegt.

Du weisst, dass m=f'(x) sein soll, aber du kennst diesen Berührpunkt zwischen t und f nicht, nennen wir ihn mal [mm] B(x_{b}/f(x_{b})) [/mm]

Also können wir t(x)=mx+n schreiben als:

[mm] t(x)=f'(x_{b})*x+n [/mm]

Jetzt weisst du aber, dass P(0/1) auch auf der Tangente liegt.
Also: [mm] 1=f'(x_{b})*0+n [/mm]
Daraus kannst du jetzt das n bestimmen (evtl aber durch einen Term in Abhängigkeit von [mm] x_{b}. [/mm]
Hast du das n, kannst du dann mal diie Tangente und di Funktion f gleichsetzen, um den konkreten Punkt [mm] B(X_{b}/f(x_{b})) [/mm] zu bestimmen, und damit nachher auch die konkrete Steigung [mm] m=f'(x_{b}) [/mm] der Tangente..

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]