matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisTangenten von Nichtkurvenpunkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - Tangenten von Nichtkurvenpunkt
Tangenten von Nichtkurvenpunkt < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangenten von Nichtkurvenpunkt: Frage!
Status: (Frage) beantwortet Status 
Datum: 20:39 So 06.02.2005
Autor: Duke

Halli-Hallo-Hallöle!

Ich war grad mal ne Woche krank und in der Zeit hatten wir in der Schule folgende Aufgabe:

Lege vom Nicht-Kurven-Punkt B(3/2) Tangenten an das Schabild von f mit
[mm] f(x)=\wurzel{x} [/mm]
Ich hab die Aufgabe mit Ansatz abgeschrieben.

Hier der Ansatz:
1. allgemeine Steigung in einem Berührpunkt P(u/v):
    [mm] f'(u)=\bruch{1}{2\wurzel{x}} [/mm]
2. Gleichung der Tangente t:
    t: y=m*x+c      m=f'(u)
        [mm] 2=\bruch{1}{2\wurzel{u}}*3+c [/mm]
        => [mm] c=2-\bruch{3}{2\wurzel{u}} [/mm]

=> t: [mm] y=\bruch{1}{2\wurzel{u}}*x+2-\bruch{3}{2\wurzel{u}} [/mm]

Bis hierher ist mir alles klar, doch jetzt hab ich ein Problem:
Was muss ich jetzt für y, u und x einsetzen, um auf die Kurvenpunkte zu kommen, durch die die Tangenten gehen?

Wäre echt nett, wenn ihr mir helfen könntet!
Gruß Duke

        
Bezug
Tangenten von Nichtkurvenpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 So 06.02.2005
Autor: Zwerglein

Hallo, Duke,
weiter kommst Du durch folgende Überlegungen:
P(u/f(u)) liegt auf dem Graphen, B(3/2) auf der Tangente.
Die Tangentensteigung ist einerseits [mm] f'(u)=\bruch{1}{2\wurzel{u}}, [/mm]
andererseits (als Gerade durch die Punkte P und B!!; Steigungsdreieck):
[mm] \bruch{\wurzel{u}-2}{u-3}. [/mm]
Setze beides gleich und vereinfache; Du erhältst:
[mm] u-4\wurzel{u}+3=0. [/mm]
Substituiere [mm] z=\wurzel{u} [/mm] und Du hat die quadratische Gleichung:
[mm] z^{2}-4z+3=0. [/mm]
Lösungen: z=1 bzw. z=3.
Rücksubstitution: u=1; u=9.
Dies sind die x-Koordinaten der beiden Kurvenpunkte (Ja: es gibt 2 Tangenten von B(3;2) aus) auf dem Graphen von f.

mfG!
Zwerglein

Bezug
                
Bezug
Tangenten von Nichtkurvenpunkt: DANKE!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 So 06.02.2005
Autor: Duke

Hi Zwerglein,

VIELEN VIELEN DANK!!!!!!!

MfG und einen schönen Sonntag Abend
Duke

Bezug
        
Bezug
Tangenten von Nichtkurvenpunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:52 So 06.02.2005
Autor: Zwerglein

Alles klaro,

Hauptsache, es hilft Dir!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]