matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisTangenten und Schnittwinken
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - Tangenten und Schnittwinken
Tangenten und Schnittwinken < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangenten und Schnittwinken: Kurvenschar - Wendetangente
Status: (Frage) beantwortet Status 
Datum: 14:58 Do 31.03.2005
Autor: krwa

Bitte helft mir ich muss die Hausaufgabe bis Montag abgeben.

ft (x)= tx² -2
        --------
          x² +1

Aufgabe:
a) Unter welchen Winkel schneidet der Graph von f, wenn t = 2, die  x- Achse?
b) Bestimmen Sie den Scgnittpunkt und den Schnittwinkel der Wendetangen von f, wenn t =2.
c) Bestimmen Sie die Gleichung der Parabel, die den Graph von f, wenn t=2 in den Nullstellen senkrecht schneidet.

- Nullstellen leigen bei x1,x2 = +- [mm] \wurzel{2/t} [/mm]
  also für t=2 bei
  x1,x2=+-1

Wendepunkte= liegen für t=2 bei
W1( [mm] \wurzel{ \bruch{1}{3}}| [/mm] -1)
W2( - [mm] \wurzel{ \bruch{1}{3}}| [/mm] -1)

Extrema(t=2) Sattelpunkt bei (0|-2)

Bitte helft mir!! Ich weiß wirklich nich wie man das machen soll !
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tangenten und Schnittwinken: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Do 31.03.2005
Autor: Max

Hallo krwa,

[willkommenmr] (hier nochmal unsere Forenregeln)

> Bitte helft mir ich muss die Hausaufgabe bis Montag
> abgeben.
>
> ft (x)= tx² -2
>          --------
>            x² +1
>

[mm] $f_t(x)=\frac{tx^2-2}{x^2+1}$ [/mm]

So schön könnte es aussehen mit unserem super Formlen.


> - Nullstellen leigen bei x1,x2 = +- [mm]\wurzel{2/t}[/mm]
> also für t=2 bei
>    x1,x2=+-1

[ok]

  

> Wendepunkte= liegen für t=2 bei
> W1( [mm]\wurzel{ \bruch{1}{3}}|[/mm] -1)
>  W2( - [mm]\wurzel{ \bruch{1}{3}}|[/mm] -1)

[ok]

>  
> Extrema(t=2) Sattelpunkt bei (0|-2)

Hmmm, bei $T(0|-2)$ ist aber bei mir ein Tiefpunkt!

  

Tipps:

> a) Unter welchen Winkel schneidet der Graph von f, wenn t =
> 2, die  x- Achse?

Du kannst den Winkel bestimmen, indem du den Steigungswinkel der Tangenten in den Nullstellen bestimmst.

>  b) Bestimmen Sie den Schnittpunkt und den Schnittwinkel
> der Wendetangen von f, wenn t =2.

Hierfür müsstest du erstmal die Wendetangenten, d.h. die Tangenten im Wendepunkt bestimmen.


> c) Bestimmen Sie die Gleichung der Parabel, die den Graph
> von f, wenn t=2 in den Nullstellen senkrecht schneidet.

Wegen der achsensymmetrie von $f$ kannst du deine Parabel hier mit [mm] $g(x)=ax^2+c$ [/mm] ansetzen. Die beiden Koeffizienten $a$ und $c$ kannst du dann über die Informationen eindeutig festlegen. Ist sozusagen eine Steckbriefaufgabe.

So, ich hoffe die Tipps helfen dir etwas.

Gruß Brackhaus



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]