matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesTangenten an Kurven
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis-Sonstiges" - Tangenten an Kurven
Tangenten an Kurven < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangenten an Kurven: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:41 Mi 07.11.2007
Autor: stefbond007

Aufgabe
Für welche Werte t>0 schneidet eine Gerade y=t*x die Funktion [mm] f(x)=\bruch{8x}{x^{2}+2} [/mm] außer im Ursprung noch in einem Punkt [mm] s_{t} [/mm] des ersten Quadranten?(Hinweis: es gibt nur eine Lösung) Die Punkte 0(0;0), [mm] T_{t}(x_{t};0) [/mm] und [mm] s_{t}(x_{t},y_{t} [/mm] bestimmen ein Dreieck. Berechnen Sie den Flächeninhalt des Dreiecks. Untersuchen Sie ob es ein t gibt, für dasdieser Flächeninhalt ein Extremum angibt.

Ich habe jetzt schon mehrere Versuche gestartet und komme, durch auflösen der Funktion und gleichstellen mit tx auf die Eine lösung, das t=4 ist! das problem besteht dann darin, dass der Flächeninhalt 0 wird.
Kann mir jemand die Aufgabe vorrechnen?? also so, dass es stimmt;)??
Danke Stef

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.






        
Bezug
Tangenten an Kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Do 08.11.2007
Autor: M.Rex

Hallo Stef und [willkommenmr]

Zur Frage der Schnittpunkte:

Setze mal gleich, also:

[mm] tx=\bruch{8x}{x^{2}+2} [/mm]
[mm] \gdw [/mm] tx(x²+2)=8x
[mm] \gdw [/mm] tx³+(2t-8)x=0

[mm] \gdw [/mm] x=0 oder tx²+2t-8=0
[mm] \gdw [/mm] x=0 oder [mm] x=\pm\wurzel{2-\bruch{8}{t}} [/mm]

[mm] x_{t_{1;2}}=\pm\wurzel{2-\bruch{8}{t}} [/mm] sind die beiden weiteren Schnittstellen, welche davon liegt denn nun im ersten Quadranten?

Und dann hast du ja das Dreieck gegeben.

Die Grundseite ist die Strecke vom Ursprung bis [mm] x_{t} [/mm]
Die Höhe ist dann der Funktionswert [mm] f(x_{t}) [/mm] oder, was einfacher ist:
[mm] t*(x_{t})=t*\wurzel{2-\bruch{8}{t}} [/mm]

Also hat das Dreieck den Flächeninhalt:

[mm] A=\bruch{1}{2}*\underbrace{\wurzel{2-\bruch{8}{t}}}_{g}*\underbrace{t*\wurzel{2-\bruch{8}{t}}}_{h} [/mm]

Hiervon suchst du nun das Maximum.

Marius



Bezug
                
Bezug
Tangenten an Kurven: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:22 Do 08.11.2007
Autor: stefbond007

So, DANKE Marius, das war echt nett.. ich hatte inchen auch meinen eigenen entscheidenden fehler gefunden....
trotzdem DANKE
stef

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]