matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungTangente von einem Punkt aus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - Tangente von einem Punkt aus
Tangente von einem Punkt aus < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente von einem Punkt aus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:18 Mo 03.01.2011
Autor: MNS93

Aufgabe
K ist das Schaubild von f mit f(x)=x*sin(x); [mm] x\in \IR. [/mm]
Für welchen Wert von u [mm] (0

Hallo zusammen,

verläuft durch den Ursprung -> O(0|0)

f(u)=u*sin(u)

f'(u)=sin(u)+u*cos(u)

0=(sin(u)+u*cos(u))(-u)+u*sin(u)

[mm] 0=-u^2*cos(u) [/mm]

[mm] u=\pm [/mm] 0

Problem: Wo steckt der Fehler? Wie komme ich auf den gesuchten Wert von u?

Gruß
Mauritius
- - -
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tangente von einem Punkt aus: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Mo 03.01.2011
Autor: Adamantin

Zu deiner Lösung: Leider konnte ich der nicht ganz folgen, da mir nicht klar ist, wo du plötzlich die 0 hernimmst. Ich nehme an, du wolltest es genau wie ich lösen und hast statt der Gegenüberstellung gleich u*sin(u) subtrahiert, wodurch natürlich eine 0 kommt, dabei aber (-u) geschrieben, was m.M. nach ein +u sein müsste. So oder so sollte deine letzte GLeichung 0=u*cos(u) lauten


Schau dir noch einmal deine Ausgangslage an: Was ist die Tangentengleichung?

allgemein: [mm] f_T(x)=mx+b [/mm]

Hier ist aber K und damit f(x) der Funktion mit f(x)=x*sin(x) bekannt, und damit auch m, denn die STeigung der Tangentengleichung ist die Ableitung der Funktion f

m=sin(x)+x*cos(x)

Ferner ist der Punkt B mit u,f(x) gegeben.

Demnach muss gelten:

Der Punkt B muss auch von der Tangenten berührt/geschnitten werden:

Einsetzten in [mm] f_T(x): [/mm]
u*sin(u)=(sin(u)+u*cos(u))*u

Anders ausgedrückt: Nachdem du die Tangentengleichung ermittelt hast, also m durch die 1. Ableitung von f ersetzt hast, musst du einfach nur den Schnittpunkt von Tangente und Graph von f finden, das ist dann der gesuchte u Wert

Diese Bedingung muss erfüllt sein. Damit erhälst du als Endlösung
[mm] u_1=0 [/mm] oder [mm] u_2=\bruch{\pi}{2} [/mm]

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                
Bezug
Tangente von einem Punkt aus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 Mo 03.01.2011
Autor: MNS93

Hallo Adamantin,

Bzgl. der Null: Da der Punkt O (0|0) auf der gesuchten Tangente liegt, kann man doch die Koordinaten von O für x und y einsetzen, oder?

allgemeine Tangentengleichung:
y=f'(u)(x-u)+f(u)
0=(sin(u)+u*cos(u))(0-u)+u*sin(u)

Frage: Wie komme ich von deiner oben genannten Gleichung
u*sin(u)=(sin(u)+u*cos(u))*u auf [mm] u=\bruch{\pi}{2}? [/mm]

[mm] u*sin(u)=u*sin(u)+u^2*cos(u) [/mm]
[mm] 0=u^2*cos(u) [/mm]

Die einzige Möglichkeit die mir einfällt um nach u aufzulösen ist durch cos(u) zu dividieren und danach die Wurzel zu ziehen, dabei komme ich allerdings nur auf u=0

Bezug
                        
Bezug
Tangente von einem Punkt aus: zwei Lösungen
Status: (Antwort) fertig Status 
Datum: 16:09 Mo 03.01.2011
Autor: Roadrunner

Hallo Mauritius!


Aus der Gleichung $0 \ = \ [mm] u^2*\cos(u)$ [/mm] folgen doch zwei verschiedene Lösungen:

[mm] $u^2 [/mm] \ = \ 0$   oder   [mm] $\cos(u) [/mm] \ = \ 0$


Gruß vom
Roadrunner


Bezug
                                
Bezug
Tangente von einem Punkt aus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:13 Mo 03.01.2011
Autor: MNS93

Ahh, stimmt ;D

dumme Frage, aber wie kann ich cos(u)=0 nach u auflösen, hab ich noch nie gemacht bzw. wurde im Unterricht noch nie besprochen.

Gruß
Mauritius

Bezug
                                        
Bezug
Tangente von einem Punkt aus: Umkehrfunktion
Status: (Antwort) fertig Status 
Datum: 16:22 Mo 03.01.2011
Autor: Infinit

Hallo Mauritius,
was Du suchst, ist die Umkehrfunktion zum Cosinus und das ist der sogenannte Arcus Cosinus. Als Gleichung bekomst Du aus Deiner Aufgabe
[mm] u = \arccos (0) [/mm] und das ist gerade bei Pi /2 der Fall, denn die Cosinuskurve geht für Pi /2 gerade durch die x-Achse durch.
Viele Grüße,
Infinit


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]