matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisTangente und Normale bestim.!!
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - Tangente und Normale bestim.!!
Tangente und Normale bestim.!! < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente und Normale bestim.!!: abi!!!!!HILFE!!!!!
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:23 Di 26.04.2005
Autor: Malcolm_X

hi leudde,

brauche dringend hilfe für meine mündliche abi prüfung , habe eine Aufgabe bei der ich mir nicht sicher bin wie vorgehen muss, habe die Lösungen zwar vorliegen, aber das bringt mir nicht viel wenn ich den Ansatz nicht verstehe. wäre lieb wenn ihr mir helfen könntet.
Also hier ist die Aufgabe:

Gegeben ist die Funktion f mit f(x)=  [mm] \bruch{x}{x+1}. [/mm] Der Graph von f hat zwei Tangenten die parallel zur ersten winkelhalbierenden sind.
a) Berechnen sie die Koordinaten der beiden Berührpunkte......b)von Punkt R(3/1) aus wird eine Tangente an den Graph f gelegt. Berechnen sie die Koordinaten des Berührpunktes und geben sie die Gleichungen der Tangente und Normale an.

Bitte helft mir bin am verzweifeln. thx im vorraus.

Mfg

        
Bezug
Tangente und Normale bestim.!!: Hinweise
Status: (Antwort) fertig Status 
Datum: 20:51 Di 26.04.2005
Autor: Loddar

Hallo Malcolm,


sagst Du uns denn auch alles, was Du weißt? Zumindest zu dieser Aufgabe?


> Gegeben ist die Funktion f mit f(x)=  [mm]\bruch{x}{x+1}.[/mm] Der
> Graph von f hat zwei Tangenten die parallel zur ersten
> winkelhalbierenden sind.

> a) Berechnen sie die Koordinaten der beiden
> Berührpunkte.

> b) von Punkt R(3/1) aus wird eine Tangente
> an den Graph f gelegt. Berechnen sie die Koordinaten des
> Berührpunktes und geben sie die Gleichungen der Tangente
> und Normale an.


zu Aufgabe a.)

Wenn die Tangenten parallel zur 1. Winkelhalbierenden sein sollen, was weißt Du dann über die Steigung [mm] $m_t$ [/mm] dieser Tangenten?

Tangente und Kurve [mm] $K_f$ [/mm] haben doch in den Berührpunkten sowohl dieselben Koordinaten als auch dieselbe Steigung.

Wie berechnet man denn die Steigung von Funktionen? Kannst Du uns die entsprechende "Steigungs-Funktion" hier nennen?


zu Aufgabe b.)

Auch hier gilt wieder dasselbe in den Berührpunkten mit den Koordinaten und den Steigungen.

Nur hier benötigen wir noch die Punkt-Steigungs-Form für die Geradengleichung:

[mm] $m_g [/mm] \ = \ [mm] \bruch{y - y_0}{x - x_0}$ $\gdw$ [/mm]   $y \ = \ [mm] m_g [/mm] * [mm] (x-x_0) [/mm] + [mm] y_0$ [/mm]

Die Werte [mm] $x_0$ [/mm] und [mm] $y_0$ [/mm] sind uns ja durch den Punkt $R \ ( 3 \ | \ 1 )$ vorgegeben:

[mm] $x_0 [/mm] \ = \ [mm] x_R [/mm] \ = \ 3$

[mm] $y_0 [/mm] \ = \ [mm] y_R [/mm] \ = \ 1$

Damit ergibt sich:

$y \ = \ [mm] m_g [/mm] * (x-3) + 1$


Für die Normale können wir auch wieder die Punkt-Steigungs-Form verwenden. Nur diesmal setzen wir für [mm] $x_0$ [/mm] und [mm] $y_0$ [/mm] die Koordinaten des berechneten Berührpunktes $B \ ( \ [mm] x_B [/mm] \ | \ [mm] y_B [/mm] \ )$  ein.

Die Steigung [mm] $m_n$ [/mm] der Normalen erhalten wir aus der Tangentensteigung durch die Beziehung:

$g \ [mm] \perp [/mm] \ n$   [mm] $\gdw$ $m_g [/mm] * [mm] m_n [/mm] \ = \ -1$


So, nun versuche Dich doch mal mit diesen Hinweisen/Tipps und poste anschließend Deine Ergebnisse ...

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]