matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungTangente parallel zur Geraden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Tangente parallel zur Geraden
Tangente parallel zur Geraden < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente parallel zur Geraden: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:40 Mo 15.10.2012
Autor: marie28

Aufgabe
Gesucht ist die Tangente an der Kurve von f(x)= [mm] 3x^{2}-2, [/mm] welche parallel zu der Geraden y=12x-5 verläuft.

Also, ich komme gerade nicht mehr weiter. Ich hab schon diesen Ansatz und hoffe er ist einigermaßen richtig:

Ich habe schon ein Anstieg m=12 (da [mm] m_{1}=m_{2} [/mm] ist)

Ableitung: [mm] f^{'}(x)=6x [/mm]

Jetzt hab ich also schon den Anstieg und die Ableitungsfunktion, aber wie mach ich jetzt weiter?

        
Bezug
Tangente parallel zur Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Mo 15.10.2012
Autor: pits

Hallo marie28,

> Ich habe schon ein Anstieg m=12 (da [mm]m_{1}=m_{2}[/mm] ist)
>  
> Ableitung: [mm]f^{'}(x)=6x[/mm]
>  
> Jetzt hab ich also schon den Anstieg und die
> Ableitungsfunktion, aber wie mach ich jetzt weiter?

Die Ableitungsfunktion gibt ja den Anstieg der Funktion an der Stelle x wieder und du suchst die Stelle x an der dieser Anstieg genau so groß wie der Anstieg der Tangenten ist.

Also musst du das gleichsetzen.

Gruß
pits

Bezug
                
Bezug
Tangente parallel zur Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 Mo 15.10.2012
Autor: marie28

Also ist das dann:

[mm] f^{'}(x)=6x [/mm]
         6x=12      |:6
          x=2

Und wie dann weiter? Wars das schon?

Bezug
                        
Bezug
Tangente parallel zur Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Mo 15.10.2012
Autor: Steffi21

Hallo, mit x=2 hast du die Stelle, an der die Tangente parallel zur Gerade g(x)=12x-5 verläuft, berechne jetzt f(2), du bekommst den Punkt P(2;f(2)), dann suchst du eine Tangente (Gerade) t(x)=m*x+n, den Anstieg m=12 hast du schon, setze dann den Punkt P ein, um n zu bestimmen, Steffi

Bezug
                                
Bezug
Tangente parallel zur Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 Mo 15.10.2012
Autor: marie28

Also:

[mm] f(2)=3*2^{2}-2 [/mm]
f(2)=10

10=2*12+n
-14=n

[mm] y_{t}=12x-14 [/mm]

Und das ist dann die Parallele zu der Geraden, ja?

Bezug
                                        
Bezug
Tangente parallel zur Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Mo 15.10.2012
Autor: Steffi21

hallo, alles ok, Steffi

Bezug
                                                
Bezug
Tangente parallel zur Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:18 Mo 15.10.2012
Autor: marie28

Danke, hab's jetzt verstanden :)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]