matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenTangente durch die x-Achse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Tangente durch die x-Achse
Tangente durch die x-Achse < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente durch die x-Achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:36 Di 18.12.2007
Autor: Owen

Aufgabe
Gegeben ist die Funktion: [mm] f(x)=\wurzel{x} [/mm]
Es soll eine Tangente angelegt werden durch den Punkt A(-1;0) auf der x-Achse. Es soll die Tangentengleichung und der Punkt x0 (den die Tangente berührt) auf der Funktion ermittelt werden.

Ich weiß zwar, dass die Steigung der Tangenten an dem Punkt A und an x0 gleich ist, jedoch kann ich damit nicht viel anfangen.
die Tangente hat die Form: f(x)=m*x+b
Wenn ich jetzt den Punkt A einsetze, habe ich: 0=m*(-1)+b
--> m=b
Aber was jetzt?


        
Bezug
Tangente durch die x-Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 00:46 Di 18.12.2007
Autor: leduart

Hallo
Geh umgekehrt vor: stell die Tangente im Punkt [mm] (x_0,\wurzel{x_0}) [/mm] auf, und bestimme [mm] x_0 [/mm] so, dass sie durch (-1,0).
Oder du siehst, dass die Gerade die von -1,0 an [mm] (x_0,\wurzel{x_0}) [/mm] geht die Steigung [mm] \wurzel{x_0}/(x_0+1) [/mm] hat und dann muss die Ableitung bei x_0auch diese Steigung haben.
Gruss leduart

Bezug
                
Bezug
Tangente durch die x-Achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:01 Di 18.12.2007
Autor: Owen

Aufgabe
s. oben

Also ich stelle die Tangentengleichung auf: [mm] \wurzel{x_{0}}=\bruch{1}{2}*x_{0}^{-\bruch{1}{2}}*x_{0}+b [/mm]
[mm] b=\wurzel{x_{0}}-(\bruch{1}{2}*x_{0}^{-\bruch{1}{2}}*x_{0}) [/mm]
[mm] t(x_{0})=\bruch{1}{2}*x_{0}^{-\bruch{1}{2}}*x_{0}+\wurzel{x_{0}}-(\bruch{1}{2}*x_{0}^{-\bruch{1}{2}}*x_{0}) [/mm]

Leider bin ich mir nicht sicher, wie ich [mm] x_{0} [/mm] so bestimme, dass die Gerade durch den Punkt A geht


Bezug
                        
Bezug
Tangente durch die x-Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 01:56 Di 18.12.2007
Autor: Martin243

Hallo,

das sieht ja alles gut aus, nur hast du das Problem, dass du nciht von deinem [mm] $x_0$ [/mm] auf ein allgemeines $x$ kommst, um die Tangentengleichung zu bekommen. Dabei musst du nur ein [mm] x_0 [/mm] ersetzen:
$ [mm] t(x)=\bruch{1}{2}\cdot{}x_{0}^{-\bruch{1}{2}}\cdot{}x+\wurzel{x_{0}}-(\bruch{1}{2}\cdot{}x_{0}^{-\bruch{1}{2}}\cdot{}x_{0}) [/mm] $

Nun setzt du einfach für x die x-Koordinate und für t(x) die y-Koordinate von A ein und bestimmst so dein [mm] x_0. [/mm]


Gruß
Martin

Bezug
                                
Bezug
Tangente durch die x-Achse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:15 Di 18.12.2007
Autor: Owen

Achso, jetzt verstehe ich das, danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]