matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenTangente durch Ursprung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Tangente durch Ursprung
Tangente durch Ursprung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente durch Ursprung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:47 Mi 11.06.2008
Autor: Owen

Aufgabe
Sei f(x)=x²-6x+11 mit [mm] x\ge0 [/mm]
a) Bestimmen Sie die Tangente an den Graphen von f(x), die durch den Nullpunkt geht.
b) Bestimmen Sie eine Tangente an den Graphen von f(x), die zu der Sekanten durch die Punkte [mm] A=(x_{A};y_{A})=(2;f(2)) [/mm] und [mm] B=(x_{B};y_{B})=(5;f(5)) [/mm] parallel ist.

Hallo,
ich bin beim Punkt a) und komme nicht auf die Idee, die hinter der Bestimmung der Tangente steht. Da die Tangente durch den Nullpunkt geht, hat sie die Form t(x)=m*x. Nun muss man das m so bestimmen, dass beim Gleichsetzen der Tangentenfunktion mit der anderen Funktion nur eine Lösung herauskommt. Aber ich komme nicht drauf, wie man hier vorgehen soll.


        
Bezug
Tangente durch Ursprung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:57 Mi 11.06.2008
Autor: abakus


> Sei f(x)=x²-6x+11 mit [mm]x\ge0[/mm]
>  a) Bestimmen Sie die Tangente an den Graphen von f(x), die
> durch den Nullpunkt geht.

Hallo,
erste Möglichkeit:
Du nimmst eine beliebige Ursprungsgerade (also y=m*x) und berechnest allgemein den/die Schnittpunkt/e mit der Parabel. Je nach Wahl des Anstiegs m gibt es keine (uninteressant), zwei (auch uninteressant) oder genau eine Lösung (Bingo!). Das war ja auch schon deine Idee.
Ansatz: [mm] x^2-6x+11=m*x. [/mm]
Jetzt Normalform herstellen und mit p-q-Formel lösen, dann die Diskriminante betrachten (muss Null werden)

zweite Möglichkeit:
Du nimmst einen beliebigen Kurvenpunkt P(x;x²-6x+11)  und verbindest in mit dem Ursprung. Stelle die Gleichung dieser Geraden auf; diese hat einen Anstieg. Der muss im Tangentenfall gleich der 1. Ableitung an der Stelle x sein.
Gruß Abakus



>  b) Bestimmen Sie eine Tangente an den Graphen von f(x),
> die zu der Sekanten durch die Punkte
> [mm]A=(x_{A};y_{A})=(2;f(2))[/mm] und [mm]B=(x_{B};y_{B})=(5;f(5))[/mm]
> parallel ist.
>  Hallo,
>  ich bin beim Punkt a) und komme nicht auf die Idee, die
> hinter der Bestimmung der Tangente steht. Da die Tangente
> durch den Nullpunkt geht, hat sie die Form t(x)=m*x. Nun
> muss man das m so bestimmen, dass beim Gleichsetzen der
> Tangentenfunktion mit der anderen Funktion nur eine Lösung
> herauskommt. Aber ich komme nicht drauf, wie man hier
> vorgehen soll.
>  


Bezug
                
Bezug
Tangente durch Ursprung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:31 Do 12.06.2008
Autor: Owen

Aufgabe
s.oben

Hallo abakus,
ich probiere es mal mit der ersten Variante.
x²-6x+11=m*x
x²-6x-m*x+11=0
x²+(-6-m)x+11=0

[mm] x_{1,2}=-\bruch{-6-m}{2}\pm\wurzel{(\bruch{-6-m}{2})²-11} [/mm]
[mm] x_{1,2}=3+\bruch{m}{2}\pm\wurzel{(-3-\bruch{m}{2})²-11} [/mm]

Nun betrachte ich die Diskriminante und setze sie auf Null:
[mm] (-3-\bruch{m}{2})²-11=0 [/mm]
[mm] -3-\bruch{m}{2}=\wurzel{11} [/mm]
[mm] m=(-3-\wurzel{11})*2=-12,633 [/mm]

Dies kann jedoch nicht stimmen. Was ist daran falsch?


Bezug
                        
Bezug
Tangente durch Ursprung: Antwort
Status: (Antwort) fertig Status 
Datum: 02:02 Do 12.06.2008
Autor: leduart

Hallo owen
Ist nicht falsch , aber es gibt ne zweite Lösung für [mm] -\wurzel{11} [/mm]
Gruss leduart

Bezug
                                
Bezug
Tangente durch Ursprung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:55 Do 12.06.2008
Autor: Owen

Hallo leduart, danke für den Hinweis.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]