matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenTangente bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Vektoren" - Tangente bestimmen
Tangente bestimmen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:30 Mi 20.10.2010
Autor: Kuriger

Hallo

Hier mal ein zentrales Beispiel...

bestimmen Sie die Gleichung der Tangente zur Kurve r = 3 + 8 sin [mm] (\alpha) [/mm] beim Winkel [mm] \alpha [/mm] = [mm] \bruch{\pi}{6}. [/mm]

Ich möchte gerne diese Aufgabe direkt im Polarkoordinatensystem lösen und anschliessend auch in die kartesische Koordinatenform umwandeln und entsprechend lösen...

[mm] \bruch{dy}{dx} (\alpha) [/mm] = [mm] \bruch{sin (\alpha) * \bruch{dr}{d\alpha} (\alpha) + r(\alpha) * cos(\alpha)}{cos(\alpha) * \bruch{dr}{d\alpha} (\alpha) - r (\alpha) * sin(\alpha} [/mm]

Habe ich da eine falsche Formel?

[mm] \bruch{dy}{dx} (\alpha) [/mm]  = [mm] \bruch{sin(\alpha) * 8cos(\alpha) + 3 + 8sin(\alpha) * cos(\alpha)}{8cos^2(\alpha) -3sin(\alpha) - 8sin^2(\alpha)} [/mm] = [mm] \bruch{16 sin(\alpha) * cos(\alpha) + 3cos(\alpha) * cos(\alpha)}{8cos^2(\alpha) -3sin(\alpha) - 8sin^2(\alpha)} [/mm] = 3.81 = m

Nun bekomme ich definitiv Probleme, da ich micht nicht gewohnt bin mit Polarkoordinaten zu rechnen

r = 3 + [mm] 8*sin(\bruch{\pi}{6}) [/mm] = 7

Gemäss Definition: r = [mm] \wurzel{x^2 + y^2} [/mm]
Ist das eigentlich ein Kreis oder was für ein Gebilde? Nehme es mal als Kreis ab. Also ein rechtwinkliges Dreieck mit Winkel 30+ und Hyptothenusenlänge 7
y = 3.5
x = 6.06

y = 3.81x + n
y = 3.81x - 19.6

Ist das sowas?

Danke, Gruss Kuriger





        
Bezug
Tangente bestimmen: schlecht zu lesen...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:27 Mi 20.10.2010
Autor: pythagora

Guten Abend Kuriger,
kannst du die Formeln so schreiben, dass sie richtig angezeigt werden?? ich glaube, da fehlt irgendwo eine Klammer, denke ich... das ist so einfach nicht lesbar...

LG
pythagora

Bezug
        
Bezug
Tangente bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:54 Mi 20.10.2010
Autor: Sax

Hi,

die Ergebnisse sind bis auf Rundungsfehler richtig (exakt wäre  n = -21,6).

Deine Ausführungen zum Kreis sind sehr verwirrend (freundliche Umschreibung von "sehr wirr").
Die [mm] r(\alpha)-Kurve [/mm] ist sicherlich kein Kreis, andererseits liegt jeder Punkt natürlich auf einem Kreis mit Mittelpunkt O. Diesen Kreis benutzt du.

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]