matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesTangente an Kurve
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - Tangente an Kurve
Tangente an Kurve < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente an Kurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:56 Do 26.07.2007
Autor: JB84

Aufgabe
  [mm] \gamma: \mapsto \vektor{x_{1}(t) \\ x_{2}(t) }= \vektor{t*(1-t^2)^2 \\ 1-t^2 } [/mm]

Berechnen Sie die Tangente an die Kurve für t= [mm] \bruch{1}{2} [/mm]

Hallo

Hab gerade versucht, eine allgemeine Tangentengleichung für diesen Typ von Kurven herzuleiten, und wollte nachfragen ob diese Gleichung wirklich allgemein gültig ist.

meine Lösung:

  [mm] y=x_{2}(t_{0})+m(x-x_{1}(t_{0})) [/mm]

wobei

  [mm] m=x_{2} [/mm] von  [mm] \gamma^' [/mm] wenn [mm] x_{1} [/mm] = 1

Wie löst man das sonst? Wie wäre es, wenn die Parametrisierung 3 Komponenten hätte?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tangente an Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 Do 26.07.2007
Autor: Somebody


>  [mm]\gamma: \mapsto \vektor{x_{1}(t) \\ x_{2}(t) }= \vektor{t*(1-t^2)^2 \\ 1-t^2 }[/mm]
>  
> Berechnen Sie die Tangente an die Kurve für t=
> [mm]\bruch{1}{2}[/mm]
>  Hallo
>  
> Hab gerade versucht, eine allgemeine Tangentengleichung für
> diesen Typ von Kurven herzuleiten, und wollte nachfragen ob
> diese Gleichung wirklich allgemein gültig ist.
>
> meine Lösung:
>  
> [mm]y=x_{2}(t_{0})+m(x-x_{1}(t_{0}))[/mm]
>  
> wobei
>
> [mm]m=x_{2}[/mm] von  [mm]\gamma^'[/mm] wenn [mm]x_{1}[/mm] = 1

Ich denke, dies ist richtig - bei geeigneter Interpretation Deiner "wobei m=..." Klausel.

> Wie löst man das sonst?

Allgemein kann man bei einer Kurve in Parameterform die Tangentengleichung in der Parameterform praktisch ohne jede Detailrechnung einfach so hinschreiben:

[mm]t_{t_0}:\, \lambda\mapsto \vektor{x_1(t_0)\\x_2(t_0)}+\lambda \vektor{x'_1(t_0)\\x'_2(t_0)}, \;\;\lambda \in\IR[/mm]

Im wesentlichen dasselbe kannst Du im [mm] $\IR^3$ [/mm] machen: Du schreibst einfach eine dritte Koordinate dazu:
[mm]t_{t_0}:\, \lambda\mapsto \vektor{x_1(t_0)\\x_2(t_0)\\ x_3(t_0)}+\lambda \vektor{x'_1(t_0)\\x'_2(t_0)\\x'_3(t_0)}, \;\;\lambda \in\IR[/mm]


Im [mm] $\IR^2$ [/mm] hast Du dann die Möglichkeit (sofern die Tangente im Punkt [mm] $(x_1(t_0)\mid x_2(t_0))$ [/mm] nicht gerade zur $x$-Achse senkrecht steht), diese Tangentengleichung in Parameterform auf die sogenannte "explizite" Form $y=mx+q$ bzw. die "Punkt-Steigungsform" [mm] $y=m(x-x_0)+y_0$ [/mm] zu bringen: und dies scheint zu sein, was Du oben gemacht hast.

> Wie wäre es, wenn die
> Parametrisierung 3 Komponenten hätte?

Im [mm] $\IR^3$ [/mm] gibt es keine explizite Form der Geradengleichung mehr: Du musst in diesem Falle einfach bei der Parameterform der Tangentengleichung bleiben (siehe oben).

Ich würde an Deiner Stelle generell bei der Parameterform der Tangentengleichung bleiben: es sei denn, ich hätte einen ganz konkreten Grund, den zusätzlichen Aufwand zu treiben, auf die im 2-dimensionalen Fall mögliche explizite Form zu transformieren.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]