matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungTangente am Kreis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Tangente am Kreis
Tangente am Kreis < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente am Kreis: Hilfe Idee
Status: (Frage) beantwortet Status 
Datum: 09:04 So 24.05.2009
Autor: Limone81

Aufgabe
a) Ein kreis mit r=5 berührt die y-Achse im Ursprung von rechts. Begründen Sie, dass für seine Gleichung dann y²= 10x - x² gilt.
b) Wie lautet die Gleichung der Tangente im Punkt B(8/4)?
c) Der Kreis wird verschoben, sein Mittelpunkt liegt nun im Punkt M'(9/-3). Wie liegt die Tangente aus Teil b zu dem neuen Kreis? Begründen Sie Ihre Antwort, ohne viel zu rechnen.

Hallo,
also a) konnte ich mit Hilfe der QE und den binomischen Formeln lösen, aber bei b weiß ich überhaupt nicht wie ich anfangen soll, ebenso wenn ich die Gleichung hätte wüsste ich auch nichts mit c anzufangen. Die Tangentengleichun müsste doch die Form y= mx+b haben aber wenn ich den Punkt da einsetze habe ich ja noch immer zwei unbekannte???!
Kann mir jemand vielleicht erklären, was ich da überhaupt machen muss?
Das wäre sehr nett.
Liebe Grüße limönchen

        
Bezug
Tangente am Kreis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:16 So 24.05.2009
Autor: abakus


> a) Ein kreis mit r=5 berührt die y-Achse im Ursprung von
> rechts. Begründen Sie, dass für seine Gleichung dann y²=
> 10x - x² gilt.

Also: [mm] x^2-10x+y^2=0 [/mm] (beide Seiten +25)
[mm] x^2-10x+25+y^2=25 [/mm]
[mm] (x-5)^2+(y-0)^2=25 [/mm]

>  b) Wie lautet die Gleichung der Tangente im Punkt B(8/4)?
>  c) Der Kreis wird verschoben, sein Mittelpunkt liegt nun
> im Punkt M'(9/-3). Wie liegt die Tangente aus Teil b zu dem
> neuen Kreis? Begründen Sie Ihre Antwort, ohne viel zu
> rechnen.
>  Hallo,
>  also a) konnte ich mit Hilfe der QE und den binomischen
> Formeln lösen, aber bei b weiß ich überhaupt nicht wie ich
> anfangen soll, ebenso wenn ich die Gleichung hätte wüsste

Hallo,
diese Aufgabe KANN gar nicht gestellt worden sein, ohne dass ihr (vermutlich erst vor wenigen Tagen?) im Unterricht die Gleichung für eine Tangente an einen Kreispunkt kennen gelernt habt.
Nimm also bitte deine Aufzeichnungen oder dein Lehrbuch und schau nach.
Die Kreisgleichung sollte nur vorher in die "normale" Form
[mm] (x-5)^2+(y-0)^2=25 [/mm]
umgestellt worden sein, dann kannst du die bekannte Tangentenformel anwenden.
Gruß Abakus


> ich auch nichts mit c anzufangen. Die Tangentengleichun
> müsste doch die Form y= mx+b haben aber wenn ich den Punkt
> da einsetze habe ich ja noch immer zwei unbekannte???!
>  Kann mir jemand vielleicht erklären, was ich da überhaupt
> machen muss?
>  Das wäre sehr nett.
>  Liebe Grüße limönchen


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]