matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesTangente
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - Tangente
Tangente < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 So 14.12.2008
Autor: csak1162

Aufgabe
Berechne alle Tangenten an den Graphen der Funktion

[mm] f:\IR \to\IR:x \mapsto -\wurzel{x² + 6}, [/mm]

die durch den Punkt [mm] (\bruch{9}{2},\bruch{3}{2}) [/mm]

gehen.

okay bei der aufgabe stehe ich völlig an.

Kann mir jemand vielleich relativ genau erklären worum es da geht und was ich da überhaupt machen muss??

was muss ich da rechnen???


danke lg

        
Bezug
Tangente: Antwort
Status: (Antwort) fertig Status 
Datum: 16:21 So 14.12.2008
Autor: M.Rex

Hallo

Du suchst Tangenten, das sind ja Geraden, die du als t(x)=mx+n drastellen kannst.


Du weisst, dass diese Tangente im (noch unbekannten) Berührpunkt [mm] B(x_{b}/-\wurzel{(x_{b})²+6}) [/mm] dieselbe Steigung wie f hat, diese kannst du mit [mm] f'(x_{b}) [/mm] berechen, also gilt [mm] m=f'(x_{b}) [/mm]

Was du noch weisst, ist, dass diese Geraden durch [mm] P\left(\bruch{9}{2},\bruch{3}{2}\right) [/mm] gehen sollen, also

[mm] \bruch{3}{2}=f'(x_{b})*\bruch{9}{2}+n [/mm]
[mm] \gdw n=\bruch{3-9*f'(x_{b})}{2} [/mm]

Also hast du die Tangente [mm] t(x)=f'(x_{b})*x+\bruch{3-9*f'(x_{b})}{2} [/mm]

Jetzt kannst du diese mit f(x) gleichsetzen, um den Berührpunkt B zu bestimmen, also:

[mm] \overbrace{f'(x_{b})*x_{b}+\bruch{3-9*f'(x_{b})}{2}}^{t(x)}=-\wurzel{(x_{b})²+6} [/mm]

Daraus berechne jetzt mal die x-Koordinate der Berührpunkte/des Berührpunkts.

Hast du den, kannst du damit auch die/den konkreten Wert(e) für [mm] f'(x_{b}) [/mm] berechnen, und damit dann die Tangente(n) bestimmen.

Marius

Bezug
                
Bezug
Tangente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 So 14.12.2008
Autor: csak1162

Aufgabe
Du weisst, dass diese Tangente im (noch unbekannten)
> Berührpunkt [mm]B(x_{b}/-\wurzel{(x_{b})²+6})[/mm] dieselbe Steigung
> wie f hat, diese kannst du mit [mm]f'(x_{b})[/mm] berechen, also
> gilt [mm]m=f'(x_{b})[/mm]


ehrlich gesgat habe ich das leider noch nicht verstanden!
verstehe schon da nicht genau was das [mm] x_{b} [/mm] sein soll, oder wei ich auf das komme

> Du weisst, dass diese Tangente im (noch unbekannten)
> Berührpunkt [mm]B(x_{b}/-\wurzel{(x_{b})²+6})[/mm] dieselbe Steigung
> wie f hat, diese kannst du mit [mm]f'(x_{b})[/mm] berechen, also
> gilt [mm]m=f'(x_{b})[/mm]


danke lg


Bezug
                        
Bezug
Tangente: Berührpunkt
Status: (Antwort) fertig Status 
Datum: 21:55 So 14.12.2008
Autor: Loddar

Hallo csak!


Mit [mm] $x_b$ [/mm] ist diejenige x-Stelle gemeint, an welcher die gesuchte Tangente die gegebene Funktionskurve berührt.

An diesem Punkt $B \ [mm] \left( \ x_b \ | \ f(x_b) \ \right)$ [/mm] müssen folgende Bedingungen von Funktion $f(x)_$ und gesuchter Tangente $t(x) \ = \ m*x+n$ gelten:

[mm] $$f(x_b) [/mm] \ = \ [mm] t(x_b)$$ [/mm]
[mm] $$f'(x_b) [/mm] \ = \ [mm] t'(x_b)$$ [/mm]
Zudem muss für die Funktionsgleichung der Tangente gelten:
[mm] $$t\left(\bruch{9}{2}\right) [/mm] \ = \ [mm] m*\bruch{9}{2}+n [/mm] \ = \ [mm] \bruch{3}{2}$$ [/mm]

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]