matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieTangens von Innenwinkeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Topologie und Geometrie" - Tangens von Innenwinkeln
Tangens von Innenwinkeln < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangens von Innenwinkeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 Fr 04.05.2012
Autor: imagemixer

Aufgabe
Zeigen Sie, daß für ein nicht-rechtwinkliges Dreieck mit den Innenwinkeln [mm] \alpha,\beta,\gamma [/mm]
gilt:
[mm] tan\alpha [/mm] + [mm] tan\beta [/mm] + [mm] tan\gamma \not= [/mm] 0 .
Hinweis: Innenwinkelsumme.


Hallo,
bei der Aufgabe ist mir die Funktion des Tangens' in nicht-rechtwinkligen Dreiecken nicht ganz klar.
Okay, wir hatten schon die Formel für den Höhenschnittpunkt

[mm] h=\bruch{1}{\tan\alpha + \tan\beta + \tan\gamma} \* (a\tan\alpha [/mm] + [mm] b\tan\beta [/mm] + [mm] c\tan\gamma) [/mm]
(a,b,c sind die Ecken des Dreiecks).

Wenn die Tangenssume 0 wäre, ginge das nicht, da man nicht durch 0 teilen darf. Das wäre aber bisschen zu kurz und richtig gezeigt hat man damit ja auch nichts. Ich bin also für Anregungen offen.
Wie muss ich denn Vorgehen, um das zu zeigen ?


        
Bezug
Tangens von Innenwinkeln: Antwort
Status: (Antwort) fertig Status 
Datum: 23:38 Fr 04.05.2012
Autor: Leopold_Gast

Nun, der Hinweis ist goldrichtig. Es gilt ja: [mm]\alpha + \beta + \gamma = \pi[/mm]. Löse das nach [mm]\gamma[/mm] auf und setze es im vorgegebenen Term ein. Beachte, daß

i) der Tangens die Periode [mm]\pi[/mm] hat: [mm]\tan(t + \pi) = \tan t[/mm]

ii) der Tangens ungerade ist: [mm]\tan(-t) = -\tan(t)[/mm]

iii) der Tangens dem Additionstheorem [mm]\tan(s+t) = \frac{\tan s + \tan t}{1 - \tan s \cdot \tan t}[/mm] gehorcht

Du kommst schließlich auf

[mm]\tan \alpha + \tan \beta + \tan \gamma = \frac{\left( \tan \alpha + \tan \beta \right) \cdot \tan \alpha \cdot \tan \beta}{\tan \alpha \cdot \tan \beta - 1}[/mm]

Und jetzt muß man sich nur noch die Produktdarstellung des Zählers genauer vornehmen.

Bezug
                
Bezug
Tangens von Innenwinkeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:42 Sa 05.05.2012
Autor: imagemixer

Danke erstmal für deine Antwort.
Du hast mir ja schon gegeben:
$ [mm] \tan \alpha [/mm] + [mm] \tan \beta [/mm] + [mm] \tan \gamma [/mm] = [mm] \frac{\left( \tan \alpha + \tan \beta \right) \cdot \tan \alpha \cdot \tan \beta}{\tan \alpha \cdot \tan \beta - 1} [/mm] $

Mit dem Additionstheorem für Tangens kann ich den Bruch aber vereinfachen und komme dann auf das Ergebnis

[mm] \tan \alpha [/mm] + [mm] \tan \beta [/mm] + [mm] \tan \gamma [/mm] = 0
[mm] \gdw \alpha+\beta [/mm] = [mm] x\*\pi \vee \beta= x\*\pi \vee \alpha [/mm] = [mm] x\*\pi [/mm] , [mm] x\in\IN [/mm]

[mm] \pi [/mm] war ja in Bogenmaß, in Grad ist also
[mm] \alpha+\beta [/mm] = [mm] x\*\ [/mm] 180 [mm] \vee \beta= x\*\ [/mm] 180 [mm] \vee \alpha [/mm] = [mm] x\*\ [/mm] 180, [mm] x\in\IN [/mm]

Widerspruch! [mm] \alpha [/mm] und [mm] \beta [/mm] sind definitiv [mm] \not=180° [/mm] oder ein vielfaches davon, [mm] \alpha+\beta [/mm] ebenfalsl nicht. Das wär's dann.

Bezug
                        
Bezug
Tangens von Innenwinkeln: Antwort
Status: (Antwort) fertig Status 
Datum: 03:05 Sa 05.05.2012
Autor: steppenhahn

Hallo,

>  [mm]\tan \alpha + \tan \beta + \tan \gamma = \frac{\left( \tan \alpha + \tan \beta \right) \cdot \tan \alpha \cdot \tan \beta}{\tan \alpha \cdot \tan \beta - 1}[/mm]
>  
> Mit dem Additionstheorem für Tangens kann ich den Bruch
> aber vereinfachen und komme dann auf das Ergebnis
>
> [mm]\tan \alpha[/mm] + [mm]\tan \beta[/mm] + [mm]\tan \gamma[/mm] = 0
>  [mm]\gdw \alpha+\beta[/mm] = [mm]x\*\pi \vee \beta= x\*\pi \vee \alpha[/mm]
> = [mm]x\*\pi[/mm] , [mm]x\in\IN[/mm]
>  
> [mm]\pi[/mm] war ja in Bogenmaß, in Grad ist also
> [mm]\alpha+\beta[/mm] = [mm]x\*\[/mm] 180 [mm]\vee \beta= x\*\[/mm] 180 [mm]\vee \alpha[/mm]
> = [mm]x\*\[/mm] 180, [mm]x\in\IN[/mm]
>  
> Widerspruch! [mm]\alpha[/mm] und [mm]\beta[/mm] sind definitiv [mm]\not=180°[/mm]
> oder ein vielfaches davon, [mm]\alpha+\beta[/mm] ebenfalsl nicht.
> Das wär's dann.

Genau!


Stefan

Bezug
                                
Bezug
Tangens von Innenwinkeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:43 Sa 05.05.2012
Autor: imagemixer

danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]