matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenTangens hyperbolicus
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Trigonometrische Funktionen" - Tangens hyperbolicus
Tangens hyperbolicus < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangens hyperbolicus: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:13 Mi 10.10.2007
Autor: schlaumeier

Aufgabe
f(x)=0,5ln(x+1/x-1)
g(x)=tan h(x)

Benötige den Beweis, dass die gegebene Funktion tan h(x) die Umkehrfunktion der Funktion  f(x) ist. Umkehr von f(x) zu g(x), also nicht den gewöhnlichen Weg...
Dieses Forum ist das Einzige, in dem ich diese Frage stelle.

        
Bezug
Tangens hyperbolicus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:38 Mi 10.10.2007
Autor: Marc

Hallo schlaumeier

> f(x)=0,5ln(x+1/x-1)

Bist Du sicher, dass die Funktion so lautet:

[mm] $f(x)=0{,}5\ln\left(x+\bruch1x-1\right)$ [/mm]

Falls nicht, korrigiere sie bitte.

Viele Grüße,
Marc

Bezug
                
Bezug
Tangens hyperbolicus: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 Mi 10.10.2007
Autor: rainerS

Hallo,

er meint

[mm] \bruch{1}{2} \ln \bruch{1+x}{1-x} [/mm].

[mm]\bruch{1}{2} \ln \bruch{x+1}{x-1}[/mm] ist die Umkehrfunktion von coth.

Das lässt sich aus
[mm] \tanh x = \bruch{e^x-e^{-x}}{e^x+e^{-x}} [/mm]
schnell ausrechnen: setze [mm]z=e^x[/mm] und löse nach z auf.

Viele Grüße
  Rainer

Bezug
        
Bezug
Tangens hyperbolicus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:24 Mi 10.10.2007
Autor: schlaumeier

1. "ist die Umkehrfunktion von coth.(x) "ist nicht ganz korekt, da die Vorzeichen im Zähler und Nenner vertauscht sind. Richtig: tanh(x)
2. Der Weg des Beweises geht aber von :   f(x) zu g(x)!!!



Bezug
                
Bezug
Tangens hyperbolicus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:04 Do 11.10.2007
Autor: rainerS

Hallo!

> 1. "ist die Umkehrfunktion von coth.(x) "ist nicht ganz
> korekt, da die Vorzeichen im Zähler und Nenner vertauscht
> sind. Richtig: tanh(x)

[notok] Was du schreibst kann nicht sein, da der coth für positive reelle Argumente immer Werte >1 liefert, der tanh zwischen 0 und 1.

>  2. Der Weg des Beweises geht aber von :   f(x) zu g(x)!!!

??? Umkehrfunktion ist Umkehrfunktion, da gibt's nicht zwei verschiedene je nach Richtung.

Grüße
  Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]