matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenTangens
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Tangens
Tangens < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangens: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 22:46 Fr 06.11.2009
Autor: student87

Aufgabe
Es sei [mm] x\in (0;\bruch{\pi}{2}). [/mm] Mit Hilfe geeigneter rechwinkliger Dreiecke bestimme man die Werte der drei anderen Funktionen (cot, cos, sin).
tan [mm] (x)=\bruch{12}{5} [/mm]

N´abend,
so, ich hab mir zu der Aufgabe erst mal eine Zeichnung gemacht.
[Dateianhang nicht öffentlich]
Mit Hilfe dieser Zeichnung soll ich jetzt angeblich über den Satz des Phytagoras oder anderer Formeln die im Dreieck gelten, auf die Lösung kommen, aber wie??? Ich könnte die Werte für die anderen Winkelfunktionen ja einfach mit dem Taschenrechner ausrechnen, dann kommt man z.B. auf sin(x) = [mm] \bruch{12}{13} [/mm] aber das ist halt nicht das was der Prof. sehen möchte. Hat jemand eine Idee?
Danke im voraus
markus

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Tangens: Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 Fr 06.11.2009
Autor: abakus


> Es sei [mm]x\in (0;\bruch{\pi}{2}).[/mm] Mit Hilfe geeigneter
> rechwinkliger Dreiecke bestimme man die Werte der drei
> anderen Funktionen (cot, cos, sin).
>  tan [mm](x)=\bruch{12}{5}[/mm]
>  N´abend,
>  so, ich hab mir zu der Aufgabe erst mal eine Zeichnung
> gemacht.
>  [Dateianhang nicht öffentlich]
>  Mit Hilfe dieser Zeichnung soll ich jetzt angeblich über
> den Satz des Phytagoras oder anderer Formeln die im Dreieck
> gelten, auf die Lösung kommen, aber wie??? Ich könnte die
> Werte für die anderen Winkelfunktionen ja einfach mit dem
> Taschenrechner ausrechnen, dann kommt man z.B. auf sin(x) =
> [mm]\bruch{12}{13}[/mm] aber das ist halt nicht das was der Prof.
> sehen möchte. Hat jemand eine Idee?
>  Danke im voraus
>  markus

Hallo,
dein großes rechtwinkliges Dreieck hat die Kathetenlängen 2,4 und 1.
Daraus kannst du auch die Hypotenuse berechnen (die ist 2,6).
Das kleine Dreieck mit sin und cos ist zu diesem ähnlich und hat nur die Hypotenusenlänge 1...
Gruß Abakus


Bezug
                
Bezug
Tangens: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:18 Fr 06.11.2009
Autor: student87

Mathe kann so einfach sein wenn man nur auf die richtigen Ansätze kommt ;-)
Danke für die schnelle Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]