matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikTail Sigma-Algebra
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Tail Sigma-Algebra
Tail Sigma-Algebra < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tail Sigma-Algebra: Anschauung
Status: (Frage) beantwortet Status 
Datum: 11:19 Di 19.04.2005
Autor: Astrid

Hallo liebe Mathebegeisterte! ;-)

Wir haben in der Vorlesung die [mm] Tail-\sigma-Algebra $A_{\infty}$ [/mm] definiert als
[mm]A_{\infty} = \bigcap_{n \in \IN} \sigma( \bigcup_{m \geq n} A_n)[/mm]

und als Beispiel die kanonischen [mm] \sigma-Algebren[/mm]  [mm]A_n=\sigma(X_n)[/mm] betrachtet.

Dann ist für eine Folge [mm] $a_n \to \infty$ [/mm] und [mm] $S_n=\summe_{i=1}^{n} X_i$ [/mm]
[mm]\text{lim inf } \bruch{S_n}{a_n}[/mm] [mm]A_{\infty}-B[/mm]-messbar aber [mm] $S_n$ [/mm] und [mm] $\text{lim inf } S_n$ [/mm] sind i. A. nicht [mm]A_{\infty}-B[/mm]-messbar. Wieso? [haee]

($B$ soll die entsprechende Borel [mm] \sigma-Algebra [/mm] sein)

Aus irgendeinem Grund werden bei mir alle Zeichen durcheinandergeschlissen, wenn ich versuche [mm] $\cal{A}$ [/mm] statt $A$ für die [mm] \sigma-Algebra [/mm] zu schreiben.... [kopfkratz3]

Danke schon mal für deine Hilfe!
Astrid

        
Bezug
Tail Sigma-Algebra: \cal A
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:58 Di 19.04.2005
Autor: Brigitte

Liebe Astrid!

Zumindest bei dem einen Problem kann ich evt. helfen. Schreib mal die geschweiften Klammern außen herum, d.h. [mm] ${\cal A}$ [/mm] (draufklicken, um Quelltext zu sehen). Dann müsste es passen.

Liebe Grüße
Brigitte

P.S.: Und alles, alles Gute für die Prüfung!

Bezug
        
Bezug
Tail Sigma-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 18:10 Di 19.04.2005
Autor: Stefan

Liebe Astrid!

Pass auf, ich erkläre es dir nur anschaulich, ja?

Ich habe es zwar nach langer Mega-"Rechnung" auch formal hinbekommen, aber das trägt zum Verständnis nichts bei, denn so musst du es in der Prüfung eh nicht können.

Also, die Zufallsvariablen, die bezüglich der [mm] Tail-$\sigma$-Algebra ${\cal A}_{\infty}$ [/mm] messbar sind, sind die, die bezüglich beliebig "weit hinten" gelegener [mm] $\sigma$-Algebren [/mm] messbar sind. Sprich: Ihre Urbilder messbarer Mengen müssen in beliebig weit "hinten" gelegenen [mm] $\sigma$-Algebren [/mm] liegen.

Sind die [mm] $\sigma$-Algebren ${\cal A}_n$ [/mm] nun die von einem Prozess [mm] $(X_n)_{n \in \IN}$ [/mm] kanonisch erzeugten, so bedeutet das anschaulich, dass die Werte einer [mm] ${\cal A}_{\infty}$-messbaren [/mm] Abbildung nur von den Werten [mm] $X_n$ [/mm] für beliebig große $n$ (also nur vom Tail der Folge), nicht aber irgendwelchen [mm] $X_n$ [/mm] mittendrinnen abhängen darf. Die Zufallsvariable darf also nur vom asymptotischen Verhalten der Folge der [mm] $(X_n)_{n \in \IN}$ [/mm] abhängen, nicht von einzelnen Werten.

Dies tun aber [mm] $S_n$ [/mm] und [mm] $\liminf\limits_{n \to \infty}S_n$! [/mm] Sie hängen auch von den ersten Werten der [mm] $X_i$ [/mm] ab!!

Warum ist das bei

[mm] $\liminf_{n \to \infty} \frac{S_n}{a_n}$ [/mm]

nicht so?

Nun, es gilt für alle [mm] $n_0 \in \IN$: [/mm]

[mm] $\frac{S_n}{a_n} [/mm] = [mm] \underbrace{\frac{S_{n_0}}{a_n}}_{\to 0 \quad (n \to \infty)} [/mm] + [mm] \frac{\sum\limits_{k=n_0+1}^n X_k}{a_n}$. [/mm]

Und nun siehst du, dass das asymptotische Verhalten von [mm] $\frac{S_n}{a_n}$ [/mm] (und damit das Verhalten von [mm] $\liminf_{n \to \infty} \frac{S_n}{a_n}$ [/mm] gar nicht von den Werten [mm] $X_1,\ldots,X_{n_0}$ [/mm] abhängt. Dies kannst du aber für jedes feste [mm] $n_0 \in \IN$ [/mm] so machen. Also hängen die Zufallsvariable gar nicht von irgendwelchen festen [mm] $X_{n_0}$ [/mm] ab. Sie hängen nur vom Tail der Folge [mm] $(X_n)_{n \in \IN}$ [/mm] ab, d.h. die Urbilder messbarer Mengen liegen also für beliebig große [mm] $n_0 \in \IN$ [/mm] in

[mm] $\sigma\left( \bigcup\limits_{m \ge n_0} {\cal A}_m \right)$, [/mm]

und damit auch in

[mm] ${\cal A}_{\infty} [/mm] = [mm] \bigcap_{n \in \IN} \sigma\left( \bigcup\limits_{m \ge n} {\cal A}_m \right)$. [/mm]

Ja, ich weiß: Heuristik pur!

Aber du wärest über den formalen Beweis nicht glücklicher gewesen. Und ich auch nicht... so viel Schreibarbeit... bei der Serverleistung im Moment... [motz] Daher kann ich auch die Vorschau nicht vernünftig bedienen und meine Eingaben überprüfen - hüte dich also vor Tippfehlern...

Liebe Grüße
Stefan

Bezug
                
Bezug
Tail Sigma-Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:14 Di 19.04.2005
Autor: Astrid

Lieber Stefan,

danke für deine Antwort. Schon beim ersten (schnellen) Lesen sehe ich die Intuition dahinter. Werde mich dann noch mal genauer damit auseinandersetzen.

Liebe Brigitte,

dir auch vielen Dank für den Hinweis und die guten Wünsche. Das kann ich weiß Gott gebrauchen...

Viele Grüße
Astrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]