matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieSystemtheorie / Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - Systemtheorie / Beweis
Systemtheorie / Beweis < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Systemtheorie / Beweis: Aufgabe
Status: (Frage) überfällig Status 
Datum: 18:31 Sa 06.01.2007
Autor: Tequila

Aufgabe
Es sei T > 0 eine reelle, N > 0 eine ganze Zahl. Zeigen Sie:

a)
Für ein ungerades Signal u(t) bzw. u[n] gilt [mm] \integral_{T}^{-T}{u(t) dt} [/mm] = 0 bzw. [mm] \summe_{n=-N}^{n=N}u[n] [/mm] = 0.

Hallo folgenden Beweis soll ich machen (es folgen noch weitere Aufgaben)

Ich habs so gemacht, aber denke es ist falsch, denn meine Lösung gilt auch für gerade Signale. Das kann ja gar nicht sein:


zu a)

[mm] \integral_{T}^{-T}{u(t) dt} [/mm] = [mm] \integral_{0}^{T}{u(t) dt} [/mm]  + [mm] \integral_{-T}^{0}{u(t) dt} [/mm]  = [mm] \integral_{0}^{T}{u(t) dt} [/mm] - [mm] \integral_{0}^{T}{u(t) dt} [/mm]

u(t) = ungerade [mm] \Rightarrow \integral_{}^{}{u(t) dt} [/mm] = gerade = g(t)     <--- nenn ich jetzt einfach mal g(t) weils gerade ist (also die Stammfunktion)

[mm] \gdw [/mm]

[mm] \integral_{0}^{T}{u(t) dt} [/mm] - [mm] \integral_{0}^{T}{u(t) dt} [/mm]  = g(t)  [mm] \begin{cases} T, 0 \end{cases} [/mm] - g(t) [mm] \begin{cases} T, 0 \end{cases} [/mm]

( ps. wie mach ich eigentlich einfach nur nen Strich mit den Grenzen? )

Nunja aber das gilt doch auch für gerade Signale oder ?

Hab überlegt das ich irgendwo zeigen muss das gilt
g(t)=g(-t)   und u(t)=-u(-t)
nur wo ?


zum diskreten Signal:


[mm] \summe_{n=-N}^{n=N} [/mm] u[n] = [mm] \summe_{n=0}^{n=N} [/mm] u[n] + [mm] \summe_{n=-N}^{n=0} [/mm] u[n] =  [mm] \summe_{n=0}^{n=N} [/mm] u[n] - [mm] \summe_{n=0}^{n=N} [/mm] u[n] = 0

Hier aber auch das Problem das es auch für gerade Zahlen gilt oder?

Da dachte ich schon ich hab nen Beweis ausnahmsweise mal richtig und dann kommt wieder irgendwas dazwischen ;)


Danke im Voraus

        
Bezug
Systemtheorie / Beweis: tip ?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:03 Do 11.01.2007
Autor: Tequila

na kommt schon wenigstens etwas dazu sagen wäre nett ;)

Bezug
        
Bezug
Systemtheorie / Beweis: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 So 14.01.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]