matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenSystem von inhomogenen DGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - System von inhomogenen DGL
System von inhomogenen DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

System von inhomogenen DGL: Frage Fundamentalsystem
Status: (Frage) beantwortet Status 
Datum: 19:39 So 13.01.2013
Autor: atseaa

Aufgabe
Ermitteln sie alle lösungen der DGL  

[m] y'(x) = A y(x) + h(x) [/m]

mit



[m] A := \begin{pmatrix} 0& 0& 0& 0& 0& 0& 0& 1 \\ 0& 1& 0& 0& 0& 0& 0& 0 \\ 0& 0& 0& 0& 0& 0& 1& -1 \\ 0& 0& 0& 0& 0& 0& 0& 0 \\ 0& 0& 2& 0& 0& 2& 0& 0 \\ 0& 2& 0& 2& 0& 0& 0& 0 \\ 0& 0& -1& 0& 0& 0& 0& 0 \\ -1& 0& 0& 0& 0& 0& 0& 0 \end{pmatrix} [/m]

und

[m] h(x) := \begin{pmatrix} 0 \\ 0 \\ 0 \\ x ln(x) \\ 2 x^3 ln(x) \\ 2 x^2 ln(x) \\ 0 \\ 0 \end{pmatrix} [/m]


Mir ist nicht klar, wie man auf ein Fundamentalsystem (dass dann die Basis des Lösungsraums des homogenen Teils der DGL ist) kommt.

Ich habe zuerst die Eigenwerte der Matrix berechnet:

[m] {\lambda}_{1,2,3} = 0 , {\lambda}_4 = 1 , {\lambda}_{5,6} = \pm i , {\lambda}_{7,8} = \pm i [/m]

Für den vierten Eigenwert ist der zugehörige Eigenvektor
[m] v_4 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 4 \\ 2 \\ 0 \\ 0 \end{pmatrix} [/m]

Und damit müsste dieser "Basisvektor" des Fundamentalsystems so lauten:

[m] y_4 (x) = e^x * v_4 [/m]


Jetzt zum Eigenwert 0, also den ersten dreien (vielfachheit).

Einen ersten Eigenvektor kann man wieder über [m] kern(A- \lambda I) [/m] berechnen:

[m] v_1 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} [/m]

Jetzt habe ich versucht, zwei weitere, linear unabhängige Vektoren (Hauptvektoren) zu diesem Wert zu finden.

Der allgemeine Ansatz (übertragen aus dem eindimensionalen, wo man auch mit Koeffizientenvergleich weiterkommt, lautet dann für die Lösung:

[m] y(x) = ( \vec a x^2 + \vec b x + \vec c ) e^{0x} = \vec a x^2 + \vec b x + \vec c [/m]

Den habe ich dann in die DGL eingesetzt:

[m]2 \vec a x + \vec b = A ( \vec a x^2 + \vec b x + \vec c ) [/m]

Koeffizientenvergleich für [mm] x^2: [/mm]

[m]A \vec a = \vec 0 \rightarrow \vec a = v_1 [/m]

x:

[m] A \vec b = 2 \vec a \rightarrow \vec b = \begin{pmatrix} 0 \\ 0 \\ \bruch{1}{2} \\ 0 \\ 0 \\ \bruch{1}{2} \\ 0 \\ 0 \end{pmatrix} [/m]

[m] x^0 [/m]:

[m] \vec b = A \vec c [/m] führt auf ein LGS, ich wähle dann
[m] \vec c = \begin{pmatrix} 0 \\ \bruch{1}{8} \\ 0 \\ \bruch{1}{8} \\ 0 \\ 0 \\ 1 \\ 2 \end{pmatrix} [/m]


Die jeweiligen Basisvektoren des Fundamentalsystems sind dann eben diese Vektoren [m] \vec v_1 , \vec b , \vec c [/m], da [m] e^0 = 1 [/m].

Für die restlichen Nullstellen ist mein Ansatz ähnlich, nur habe ich (da i bzw. -i eine doppelte statt dreifache Nullstelle ist) einen Ansatz mit
[m] y(x) = (\vec a x + \vec b ) Cos(x) [/m] beziehungsweise [m] y(x) = (\vec a x + \vec b ) Sin(x) [/m] (für -i) gewählt.

Für das weitere Verfahren muss man anschließend die Inverse der Wronskimatrix (deren Spalten bestehen aus der Basis des Fundamentalsystems) an der Stelle x = 0 bestimmen, was nicht geht, da diese singulär ist (bei mir ;) ). Ebenso ist die Determinante bei x = 0 gleich 0, was wohl heißt, dass noch Spalten linear abhängig sind.

Kann mir jemand sagen, was ich falsch mache?

        
Bezug
System von inhomogenen DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 So 13.01.2013
Autor: MathePower

Hallo atseaa,

> Ermitteln sie alle lösungen der DGL  
>
> [m]y'(x) = A y(x) + h(x)[/m]
>  
> mit
>
>
>
> [m]A := > \begin{pmatrix} 0& 0& 0& 0& 0& 0& 0& 1 \\ 0& 1& 0& 0& 0& 0& 0& 0 \\ 0& 0& 0& 0& 0& 0& 1& -1 \\ 0& 0& 0& 0& 0& 0& 0& 0 \\ 0& 0& 2& 0& 0& 2& 0& 0 \\ 0& 2& 0& 2& 0& 0& 0& 0 \\ 0& 0& -1& 0& 0& 0& 0& 0 \\ -1& 0& 0& 0& 0& 0& 0& 0 \end{pmatrix}[/m]
>  
> und
>
> [m]h(x) := \begin{pmatrix} 0 \\ 0 \\ 0 \\ x ln(x) \\ 2 x^3 ln(x) \\ 2 x^2 ln(x) \\ 0 \\ 0 \end{pmatrix}[/m]
>  
> Mir ist nicht klar, wie man auf ein Fundamentalsystem (dass
> dann die Basis des Lösungsraums des homogenen Teils der
> DGL ist) kommt.
>
> Ich habe zuerst die Eigenwerte der Matrix berechnet:
>
> [m]{\lambda}_{1,2,3} = 0 , > {\lambda}_4 = 1 , > {\lambda}_{5,6} = \pm i , > {\lambda}_{7,8} = \pm i > [/m]
>  
> Für den vierten Eigenwert ist der zugehörige Eigenvektor
> [m]v_4 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 4 \\ 2 \\ 0 \\ 0 \end{pmatrix}[/m]
>  
> Und damit müsste dieser "Basisvektor" des
> Fundamentalsystems so lauten:
>
> [m]y_4 (x) = e^x * v_4[/m]
>  
>
> Jetzt zum Eigenwert 0, also den ersten dreien
> (vielfachheit).
>
> Einen ersten Eigenvektor kann man wieder über [m]kern(A- \lambda I)[/m]
> berechnen:
>
> [m]v_1 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}[/m]
>  
> Jetzt habe ich versucht, zwei weitere, linear unabhängige
> Vektoren (Hauptvektoren) zu diesem Wert zu finden.
>


Bestimme den [mm]\operatorname{Kern}\left(A^{2}\right)[/mm] und [mm]\operatorname{Kern}\left(A^{3}\right)[/mm].

Wähle aus [mm]\operatorname{Kern}\left(A^{3}\right)[/mm] einen Vektor,
der nicht in [mm]\operatorname{Kern}\left(A^{2}\right)[/mm] liegt.

Wähle aus [mm]\operatorname{Kern}\left(A^{2}\right)[/mm] einen Vektor,
der nicht in [mm]\operatorname{Kern}\left(A^{1}\right)[/mm] liegt.

Damit ergeben sich die 3 linear unabhängige Lösungen zum Eigenwert 0.


> Der allgemeine Ansatz (übertragen aus dem
> eindimensionalen, wo man auch mit Koeffizientenvergleich
> weiterkommt, lautet dann für die Lösung:
>
> [m]y(x) = ( \vec a x^2 + \vec b x + \vec c ) e^{0x} = \vec a x^2 + \vec b x + \vec c [/m]
>  
> Den habe ich dann in die DGL eingesetzt:
>
> [m]2 \vec a x + \vec b = A ( \vec a x^2 + \vec b x + \vec c )[/m]
>  
> Koeffizientenvergleich für [mm]x^2:[/mm]
>  
> [m]A \vec a = \vec 0 \rightarrow \vec a = v_1[/m]
>  
> x:
>  
> [m]A \vec b = 2 \vec a \rightarrow \vec b = \begin{pmatrix} 0 \\ 0 \\ \bruch{1}{2} \\ 0 \\ 0 \\ \bruch{1}{2} \\ 0 \\ 0 \end{pmatrix}[/m]
>  
> [m]x^0 [/m]:
>  
> [m]\vec b = A \vec c[/m] führt auf ein LGS, ich wähle dann
>  [m]\vec c = \begin{pmatrix} 0 \\ \bruch{1}{8} \\ 0 \\ \bruch{1}{8} \\ 0 \\ 0 \\ 1 \\ 2 \end{pmatrix}[/m]
>  
>
> Die jeweiligen Basisvektoren des Fundamentalsystems sind
> dann eben diese Vektoren [m]\vec v_1 , \vec b , \vec c [/m], da
> [m]e^0 = 1 [/m].
>  
> Für die restlichen Nullstellen ist mein Ansatz ähnlich,
> nur habe ich (da i bzw. -i eine doppelte statt dreifache
> Nullstelle ist) einen Ansatz mit
> [m]y(x) = (\vec a x + \vec b ) Cos(x)[/m] beziehungsweise [m]y(x) = (\vec a x + \vec b ) Sin(x)[/m]
> (für -i) gewählt.
>
> Für das weitere Verfahren muss man anschließend die
> Inverse der Wronskimatrix (deren Spalten bestehen aus der
> Basis des Fundamentalsystems) an der Stelle x = 0
> bestimmen, was nicht geht, da diese singulär ist (bei mir
> ;) ). Ebenso ist die Determinante bei x = 0 gleich 0, was
> wohl heißt, dass noch Spalten linear abhängig sind.
>
> Kann mir jemand sagen, was ich falsch mache?


Gruss
MathePower

Bezug
                
Bezug
System von inhomogenen DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:15 So 13.01.2013
Autor: atseaa

Zur Klarstellung: du bestimmst eigentlich [m] Kern((A- \lambda I)^2) [/m] und [m] Kern((A- \lambda I)^3) [/m], oder? (Wobei Lambda hier null ist).

Bezug
                        
Bezug
System von inhomogenen DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 So 13.01.2013
Autor: MathePower

Hallo atseaa,

> Zur Klarstellung: du bestimmst eigentlich [m]Kern((A- \lambda I)^2)[/m]
> und [m]Kern((A- \lambda I)^3) [/m], oder? (Wobei Lambda hier null
> ist).


Richtig.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]