matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieSymmetrische Polynome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Symmetrische Polynome
Symmetrische Polynome < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Symmetrische Polynome: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:34 Di 24.06.2008
Autor: mathefuchs06

Aufgabe
Hallo,

ich habe die Polynome
[mm] s_1(x)=(x-\alpha_1)\cdot\ldots\cdot(x-\alpha_n) [/mm]
[mm] s_2(x)=(x-\alpha_1-\alpha_2) \cdot \ldots \cdot (x-\alpha_{n-1}-\alpha_n) [/mm]
[mm] \vdots [/mm]
[mm] s_n(x)=x-\alpha_1-\ldots-\alpha_n [/mm]

gegeben, also quasi alle Polynome, mit sämtlichen möglichen Summen der [mm] \alpha_i \in \IC [/mm] als Nullstellen.

Ich muss nun zeigen, dass das Polynom
[mm] s_{produkt}(x)=s_1 \cdot \ldots \cdot s_n [/mm]
rationale Koeffizienten hat???

Ich weiß, dass es symmetrisch in allen Summen der [mm] \alpha_i [/mm] ist, nennen wir diese Summen mal [mm] \beta_j. [/mm] Ich weiß, dass der Hauptsatz über symmetrische Polynome besagt, dass ich [mm] s_{produkt}(x) [/mm] in den elementarsymmetrischen Funktionen in den [mm] \beta_j [/mm] ausdrücken kann und dass die Koeffizienten dabei wenn sie rational waren auch rational bleiben, doch ich bin mir nicht sicher ob und warum die Koeffizienten von [mm] s_{produkt}(x) [/mm] rational sind??

Ich hoffe mir kann jemand helfen. Vielen Dank schonmal...
Lg Mathefuchs

        
Bezug
Symmetrische Polynome: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:47 Di 24.06.2008
Autor: felixf

Hallo

> ich habe die Polynome
>  [mm]s_1(x)=(x-\alpha_1)\cdot\ldots\cdot(x-\alpha_n)[/mm]
>  [mm]s_2(x)=(x-\alpha_1-\alpha_2) \cdot \ldots \cdot (x-\alpha_{n-1}-\alpha_n)[/mm]
>  
> [mm]\vdots[/mm]
>  [mm]s_n(x)=x-\alpha_1-\ldots-\alpha_n[/mm]
>  
> gegeben, also quasi alle Polynome, mit sämtlichen möglichen
> Summen der [mm]\alpha_i \in \IC[/mm] als Nullstellen.
>  
> Ich muss nun zeigen, dass das Polynom
>  [mm]s_{produkt}(x)=s_1 \cdot \ldots \cdot s_n[/mm]
>  rationale
> Koeffizienten hat???

Wenn [mm] $\alpha_1 [/mm] = e = [mm] \exp(1)$ [/mm] ist und [mm] $\alpha_2 [/mm] = [mm] \dots [/mm] = [mm] \alpha_n [/mm] = 1$ ist, dann ist der konstante Term vom Produkt doch ein Polynom mit rationalen Koeffizienten in $e$ (sozusagen als Unbestimmte gesehen) von Grad $> 0$, also insbesondere ist der konstante Term nicht rational?

Insbesondere im Fall $n = 1$ ist ja [mm] $s_1(x) [/mm] = x - [mm] \alpha_1$ [/mm] gleich dem Produkt, und das hat insbesondere nur dann rationale Koeffizienten, wenn [mm] $\alpha_1$ [/mm] schon rational ist!

LG Felix


Bezug
                
Bezug
Symmetrische Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:29 Di 24.06.2008
Autor: mathefuchs06


> Wenn [mm]\alpha_1 = e = \exp(1)[/mm] ist und [mm]\alpha_2 = \dots = \alpha_n = 1[/mm]
> ist, dann ist der konstante Term vom Produkt doch ein
> Polynom mit rationalen Koeffizienten in [mm]e[/mm] (sozusagen als
> Unbestimmte gesehen) von Grad [mm]> 0[/mm], also insbesondere ist
> der konstante Term nicht rational?
>  
> Insbesondere im Fall [mm]n = 1[/mm] ist ja [mm]s_1(x) = x - \alpha_1[/mm]
> gleich dem Produkt, und das hat insbesondere nur dann
> rationale Koeffizienten, wenn [mm]\alpha_1[/mm] schon rational ist!
>  
> LG Felix

Hallo, danke schon mal, so hab ich mir dass auch gedacht und bin deshalb ins grübeln gekommen. Doch irgendwie muss ich auf ein Polynom mit rationalen Koeffizienten kommen [mm] f(x)=a_0 [/mm] + [mm] a_1 [/mm] x+ [mm] \ldots [/mm] + [mm] a_N x^N [/mm] wobei N die Anzahl der [mm] \beta_j, [/mm] also der Summen der [mm] \alpha_i [/mm] ist.

Nun sind [mm] a_0,\ldots,a_N [/mm] symmetrische Funktionen in den [mm] \beta_j [/mm] und irgendwie muss dann daraus folgen, dass diese rational sind...

Ich weiß auch nicht wie ichs anders formulieren soll und weiß auch nicht wie ich darauf komme...?!

Eventuell kann mit jemand weiterhelfen?!


Bezug
                        
Bezug
Symmetrische Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 12:23 Mi 25.06.2008
Autor: felixf

Hallo

> > Wenn [mm]\alpha_1 = e = \exp(1)[/mm] ist und [mm]\alpha_2 = \dots = \alpha_n = 1[/mm]
> > ist, dann ist der konstante Term vom Produkt doch ein
> > Polynom mit rationalen Koeffizienten in [mm]e[/mm] (sozusagen als
> > Unbestimmte gesehen) von Grad [mm]> 0[/mm], also insbesondere ist
> > der konstante Term nicht rational?
>  >  
> > Insbesondere im Fall [mm]n = 1[/mm] ist ja [mm]s_1(x) = x - \alpha_1[/mm]
> > gleich dem Produkt, und das hat insbesondere nur dann
> > rationale Koeffizienten, wenn [mm]\alpha_1[/mm] schon rational ist!
>  >  
> > LG Felix
>  
> Hallo, danke schon mal, so hab ich mir dass auch gedacht
> und bin deshalb ins grübeln gekommen. Doch irgendwie muss
> ich auf ein Polynom mit rationalen Koeffizienten kommen
> [mm]f(x)=a_0[/mm] + [mm]a_1[/mm] x+ [mm]\ldots[/mm] + [mm]a_N x^N[/mm] wobei N die Anzahl der

Hier ist $f = [mm] s_{produkt}$? [/mm]

> [mm]\beta_j,[/mm] also der Summen der [mm]\alpha_i[/mm] ist.
>  
> Nun sind [mm]a_0,\ldots,a_N[/mm] symmetrische Funktionen in den
> [mm]\beta_j[/mm] und irgendwie muss dann daraus folgen, dass diese
> rational sind...

Als rationale Funktionen in den Unbestimmten [mm] $\alpha_1, \dots, \alpha_n$ [/mm] sind die Koeffizienten alle rational. Aber das sieht man ja schon an der Konstruktion.

> Ich weiß auch nicht wie ichs anders formulieren soll und
> weiß auch nicht wie ich darauf komme...?!

Kann es sein, dass die [mm] $a_i$ [/mm] paarweise verschieden sind und die Menge [mm] $\{ \alpha_1, \dots, \alpha_n \}$ [/mm] unter allen Automorphismen von [mm] $\IC$ [/mm] abgeschlossen ist? Das ist z.B. der Fall wenn alle [mm] $\alpha_i$ [/mm] in einer Galois-Erweiterung von [mm] $\IQ$ [/mm] liegen und gerade die Menge der Konjugierten eines Elementes sind.

In dem Fall wuerde folgenden, dass die [mm] $a_i \in \IQ$ [/mm] sind.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]