matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperSymmetrien beliebiger n-Ecke
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Symmetrien beliebiger n-Ecke
Symmetrien beliebiger n-Ecke < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Symmetrien beliebiger n-Ecke: Beweisansatz
Status: (Frage) beantwortet Status 
Datum: 20:42 Mo 10.11.2014
Autor: laeuftbeidir

Aufgabe
Gegeben sei ein $n$-Eck [mm] $P_n$ [/mm] in der Ebene. Zeigen Sie:

a) Jede Symmetrieabbildung [mm] $f\in Sym(P_n)$ [/mm] ist entweder eine Drehung oder eine Spiegelung.
(Hinweis: Sie dürfen für den Beweis die folgende Aussage benutzen: Jede Isometrie der Ebene ist durch die Bildpunkte von drei Punkten festgelegt, welche nicht auf einer gemeinsamen Geraden liegen.)

b) [mm] $Sym(P_n)$ [/mm] besitzt höchstens $2n$ Elemente.

c) Besitzt [mm] $Sym(P_n)$ [/mm] genau $2n$ Elemente, so ist [mm] $P_n$ [/mm] ein regelmäßiges $n$-Eck.

d) Wir bezeichnen die Symmetriegruppe des regelmäßigen $n$-Ecks mit [mm] $D_n$. [/mm] Untersuchen Sie für die Fälle $n=3$ und $n=4$ die folgende Frage: Für welche Untergruppen $H$ von [mm] $D_n$ [/mm] gibt es ein $n$-Eck [mm] $P_n$, [/mm] für das [mm] $Sym(P_n)$ [/mm] isomorph zu $H$ ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!

Ich bin bei dieser Aufgabe leider völlig ansatzlos.

Kann ich bei a) in irgendeiner Form einen Widerspruchsbeweis führen?
Annehmen $f$ sei weder Spiegelung noch Drehung und damit zeigen, dass die Voraussetzung aus dem Hinweis verletzt wird? Wenn ja, wie fange ich am Besten an?

Bei b) habe ich erst überlegt eine Induktion über Verknüpfungstafeln zu führen, bin damit aber gescheitert. Als nächsten Ansatz habe ich überlegt, ob man (wie vielleicht auch bei Teil c) über die Ordnung etwas beweisen kann, bin daran aber ebenfalls gescheitert.

Kann mir vielleicht jemand einen Ansatz geben?

Vielen Dank!

        
Bezug
Symmetrien beliebiger n-Ecke: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 Mi 12.11.2014
Autor: justdroppingby

Hallo,

a)
bedenke, dass Kanten wieder auf kanten abgebildet werden müssen.
D.h. insbesondere die Bildpunkte zweier nebeneinanderliegender Punkte liegen wieder nebeneinander.
Und je nachdem ob sich die "Richtung" der Kante geändert hat ist es eine Drehung oder Spiegelung.

b)
Rein aus Kuriosität:
Was ist eine Induktion über Verknüpfungstafeln ?
Es geht hier ziemlich einfach: Zählen,
Wie viele Drehungen gibt es höchsten, wie viele Spiegelungen?

c)
die Ordnung von was in was?
Man könnte z.B. über die Ordnung der Drehungen argumentieren und damit die Drehwinkel bstimmen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]