matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenSymmetrie von Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Ganzrationale Funktionen" - Symmetrie von Funktionen
Symmetrie von Funktionen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Symmetrie von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Sa 05.12.2009
Autor: dudu93

Hallo. Ich verstehe nicht, wie man die Symmetrie von Funktionen "rausbekommt", ob die jeweilige Funktion nun punkt oder achsensymmetrisch ist. Muss man da etwas berechnen oder zeichnen? Über eine Antwort würde ich mich freuen,

lg

        
Bezug
Symmetrie von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Sa 05.12.2009
Autor: angela.h.b.


> Hallo. Ich verstehe nicht, wie man die Symmetrie von
> Funktionen "rausbekommt", ob die jeweilige Funktion nun
> punkt oder achsensymmetrisch ist. Muss man da etwas
> berechnen oder zeichnen? Über eine Antwort würde ich mich
> freuen,

Hallo,

Symmetrie zur y-Achse:  dann gilt  f(x)=f(-x)

Punktsymmetrie zum Ursprung: es ist f(-x)=-f(x).


Beispiele:

a) [mm] g_1(x)=x^4 -6x^2 [/mm] +5

Es ist [mm] g_1(-x)=(-x)^4 -6(-x)^2 +5=x^4 -6x^2 +5=g_1(x), [/mm] also symmetrisch zur y-Achse

b)  [mm] g_2(x)=x^7 -6x^3 [/mm] +5x

Es ist [mm] g_2(-x)=(-x)^7-6(-x)^3+5*(-x)=-x^7 -6*(-x^3)-5x=-x^7 +6x^3-5x=-(x^7 -6x^3 +5x)=-g_2(x), [/mm]

also punktsymmetrisch zum Ursprung

c) [mm] g_3(x)=x^5 -6x^4 [/mm] +3

Es ist  [mm] g_3(-x)=...=-x^5-6x^4+3 [/mm]

Offensichtlich ist [mm] g_3(-x)\not=g_3(x). [/mm]

Aber es ist auch [mm] g_3(-x) [/mm] nicht dasselbe wie [mm] -g_3(x)=-(x^5 -6x^4 +3)=-x^5+6x^4-3. [/mm]

Also ist [mm] g_3(x) [/mm] weder symmetrisch zur y-Achse noch punktsymmetrisch zum Ursprung.

Gruß v. Angela












Bezug
                
Bezug
Symmetrie von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:12 Sa 05.12.2009
Autor: dudu93

Danke für die Antwort. Also kann man sagen, dass es symm. zur y-achse ist, wenn die hochgestellten Zahlen gerade sind und dass es symm. zum Ursprung ist, wenn die hochgestellten Zahlen ungerade sind, oder?

lg

Bezug
                        
Bezug
Symmetrie von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Sa 05.12.2009
Autor: Mandy_90

Hallo

> Danke für die Antwort. Also kann man sagen, dass es symm.
> zur y-achse ist, wenn die hochgestellten Zahlen gerade sind
> und dass es symm. zum Ursprung ist, wenn die hochgestellten
> Zahlen ungerade sind, oder?

Ja so kann man das sagen.Aber du musst aufpassen,wenn gerade und Ungerade Exponenten vorkommen,so liegt keine der beiden genannten Symmetrien vor.

lg  

> lg


Bezug
                        
Bezug
Symmetrie von Funktionen: nur ganzrational!
Status: (Antwort) fertig Status 
Datum: 09:27 So 06.12.2009
Autor: informix

Hallo dudu93,

> Danke für die Antwort. Also kann man sagen, dass es symm.
> zur y-achse ist, wenn die hochgestellten Zahlen gerade sind
> und dass es symm. zum Ursprung ist, wenn die hochgestellten
> Zahlen ungerade sind, oder?
>  
> lg

Das gilt aber nur für MBganzrationale Funktionen!
Für alle anderen musst du mit [mm] f(-x)=\begin{cases} f(x), & \mbox{ achsensymmetirsch zur x-Achse } \\ -f(x), & \mbox{punktsymmetrisch zum Ursprung } \end{cases} [/mm] prüfen, ob die Funktion MBsymmetrisch ist.

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]