matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieSymmetrie in der Parketierung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Topologie und Geometrie" - Symmetrie in der Parketierung
Symmetrie in der Parketierung < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Symmetrie in der Parketierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:30 Mo 02.02.2015
Autor: senmeis

Hi,

aus diesem Link []Parketierung erkennt man, dass sich genau drei mögliche regulären Parketierungen der Ebene ergeben: Dreieckgitter, Quadratgitter und Sechseckgitter. Man sieht mit Augen selbstverständlich, dass Sechsecke näher an Kreisen sind als die anderen zwei, d.h. symmetrischer. Ist es möglich, diese Symmetrie mathematisch (z.B. anhand Basisvektoren) zu beschreiben?

Senmeis


        
Bezug
Symmetrie in der Parketierung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Mo 02.02.2015
Autor: chrisno

Der Knackpunkt ist der Begriff "symmetrischer". Der muss definiert werden. Der einfachste Fall wäre die Anzahl der verschiedenen Drehungen, die das Muster auf sich selbst abbilden. Zur Symmetrie gehören auch noch Spiegelungen, Translationen, Gleitspiegelungen.

Bezug
                
Bezug
Symmetrie in der Parketierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:42 Mi 04.02.2015
Autor: senmeis

Ich weiss nicht ob ich Deine Methode richtig verstehe, aber Dreiecke und Sechsecke drehen sich um pi/3 und das selbe Muster wird auf sich abgebildet. In diesem Sinn unterscheiden sich die beiden nicht.

Wie wäre es mit den Innenwinkeln um den Ursprung? Bei Dreiecken ist das 2pi/3, bei Quadraten pi/2 und bei Sechsecken pi/3

Senmeis


Bezug
                        
Bezug
Symmetrie in der Parketierung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 Mi 04.02.2015
Autor: chrisno

Erst definieren, dann diskutieren.
Setz Dich in die Mitte eines Dreiecks, Quadrats, Sechescks.

Bezug
                                
Bezug
Symmetrie in der Parketierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Fr 06.02.2015
Autor: senmeis

Es ist nicht so wichtig, ob diese Eigenschaft Symmetrie heisst. Hauptsache ist, Sechsecke ähneln Kreisen am besten. Wie wird diese Ähnlichkeit mathematisch beschrieben?

Senmeis


Bezug
                                        
Bezug
Symmetrie in der Parketierung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Fr 06.02.2015
Autor: Al-Chwarizmi


> Es ist nicht so wichtig, ob diese Eigenschaft Symmetrie
> heisst. Hauptsache ist, Sechsecke ähneln Kreisen am
> besten. Wie wird diese Ähnlichkeit mathematisch
> beschrieben?
>  
> Senmeis


Hallo

unter den regelmäßigen Vielecken mit n [mm] \in [/mm] { 3 , 4 , 6 }  hat
jenes mit n=6 die meisten Ecken bzw. die meisten Seiten.
Den Kreis kann man als Grenzfigur der regelmäßigen
n-Ecke für  [mm] n\to\infty [/mm]  auffassen, und es gilt:  je größer
n ist, umso besser approximiert das regelmäßige n-Eck
seinen Umkreis.
Dazu kannst du z.B. auch den Flächeninhalt oder den
Umfang des n-Ecks mit dem Flächeninhalt bzw. dem Umfang
seines Umkreises vergleichen oder die radialen Maximal-
abstände zwischen Vieleck und Umkreis betrachten.
Alles ziemlich trivial ...

LG ,   Al-Chw.    


Bezug
                                                
Bezug
Symmetrie in der Parketierung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:50 So 08.02.2015
Autor: senmeis

Vermutlich ist die Umfangsmethode eine gute Möglichkeit. Gibt’s Theorien für sowas? Kann dies auf höhrere Dimensionen erweitert werden? Beispiel: Bei 3D soll die gesamte Fläche der Oberfläche mit der Fläche einer Sphäre vergleichbar sein, die maximale radiale Länge von diesem Vieleck besitzt. Ist das eine logische Erweiterung?

Senmeis


Bezug
                                                        
Bezug
Symmetrie in der Parketierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:47 So 08.02.2015
Autor: chrisno

Mir ist der Bezug zur Parkettierung verloren gegangen.

Bezug
                                                        
Bezug
Symmetrie in der Parketierung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Di 10.02.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]