matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungSymmetrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Symmetrie
Symmetrie < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Symmetrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:24 Mo 11.05.2009
Autor: Danielt23

Aufgabe
Sei g(x) eine gerade und u(x) eine ungerade Funktion. Zeigen Sie, dass dann gilt:
[mm] \integral_{-a}^{a}{g(x) dx} [/mm] = 2 [mm] \integral_{0}^{a}{g(x) dx} [/mm] und [mm] \integral_{-a}^{a}{u(x) dx} [/mm]

Wie soll man euerer Meinung nach das zeigen. Indem man einfach was einsetzt oder? Bitte mit Äpfel und Birnen erklären wenn es geht, bin noch ziemlich am Anfang. War nie gut in Mathe, muss es aber für ne Klausur verstehen :) DANKE

        
Bezug
Symmetrie: Antwort
Status: (Antwort) fertig Status 
Datum: 13:32 Mo 11.05.2009
Autor: M.Rex

Hallo

Wenn f(x) gerade ist, ist F(x) ungerade, mach dir das mal klar.

Also:

$ [mm] \integral_{-a}^{a}{g(x) dx} [/mm] $
$ =G(a)-G(-a) $
$ =G(a)-G(a)  $ (G ist ungerade, also G(-a)=-G(a))
$ =2 G(a) $
$ =2 G(a)-G(0) $ (G ist ungerade, also G(0)=-G(0), also G(0)=0)
$ [mm] 2*\integral_{0}^{a}{g(x) dx} [/mm] $

Ganz analog funktioniert der Beweis für:

$ [mm] \integral_{-a}^{a}{u(x) dx}=0 [/mm] $

U(x) ist hier gerade, also U(x)=-U(x)

Marius

Bezug
                
Bezug
Symmetrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:28 Mo 11.05.2009
Autor: Danielt23

erstmal vielen dnak für die schnelle antwort..
ich kopiere es hier mal rein was ich nciht verstanden habe

=G(a)-G(-a) verstanden

=G(a)-G(a) muss es nicht heissen =G(a)+G(a) da =G(a)--G(a) denn G(-a)=-G(a)????

dementsprechend dann auch =2 G(a)

????

soweit sogut...

dann sagst du aber und das verwirrt mich

G ist ungerade, also G(0)=-G(0), also G(0)=0....wieso ist G(0) = -G(0) wenn es ungerade ist, ist doch nur wenn es gerade ist, dass das vorzeichen irrelevant ist??und woher weisst du dass G(0) auch wirklich 0 ist?

vielen dank


Bezug
                        
Bezug
Symmetrie: Hinweise
Status: (Antwort) fertig Status 
Datum: 17:11 Mo 11.05.2009
Autor: Loddar

Hallo Daniel!


> =G(a)-G(a) muss es nicht heissen =G(a)+G(a) da =G(a)--G(a)
> denn G(-a)=-G(a)????

[ok] Da hast Du Recht. Hier hatte sich wohl ein Tippfehler eingeschlichen.


> dann sagst du aber und das verwirrt mich
>
> G ist ungerade, also G(0)=-G(0), also G(0)=0....wieso ist
> G(0) = -G(0) wenn es ungerade ist, ist doch nur wenn es
> gerade ist, dass das vorzeichen irrelevant ist??

Wenn $G(x)_$ ungerade ist, gilt doch:
$$G(-x) \ = \ -G(+x)$$
Setzen wir nun den Wert $x \ = \ 0$ ein:
$$G(-0) \ = \ G(0) \ = \ -G(0)$$

> und woher weisst du dass G(0) auch wirklich 0 ist?

Das kann man durch Umstellen der Gleichung $G(0) \ = \ -G(0)$ erhalten.


Gruß
Loddar


Bezug
                                
Bezug
Symmetrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:53 Di 12.05.2009
Autor: Danielt23

Dankeeeee. Seit super

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]