matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenSymmetrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Rationale Funktionen" - Symmetrie
Symmetrie < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Symmetrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:15 Sa 17.03.2007
Autor: ONeil

Aufgabe
Kann eine gebrochen-rationale Funktion kompliziertere Symmetrien aufweisen? Untersuche folgende Funktion:
[mm]f(x)=\bruch{2x^2-x}{x(x-1)}[/mm]   [mm]mit D_f=D_f(x)[/mm]

Ich hab die Funktion erstmal vereinfacht zu: [mm] ~f(x)=\bruch{2x-1}{x-1}~ [/mm]
und dann die 2.te Ableitung gebildet: [mm] ~f''(x)=\bruch{2x-2}{(x-1)^4}~ [/mm]

Durch Nullsetzen kommt man auf den Wendepunkt bei [mm] ~x_0=1~ [/mm]
Aber der liegt außerhalb des Definitionsbereichs auf einer senkrechten Asymptote.
Und zum Nachweis der Punktsymmertie zu einem algemeinen Punkt P, braucht man ja den Wert [mm] ~y_0~, [/mm] um mit der [mm] Formel:~f(x_0-x)+f(x_0+x)=2y_0~ [/mm] die Symmetrie nachweisen zu können.

Edit: Ich hab jetzt einfach mal auf gut Glück die Formel angewendet und siehe da:
Als Lösung kommt der Punkt (1/1,5) raus, was stimmen könnte, wenn man den Graphen anschaut.
---
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Symmetrie: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Sa 17.03.2007
Autor: angela.h.b.


> Kann eine gebrochen-rationale Funktion kompliziertere
> Symmetrien aufweisen? Untersuche folgende Funktion:
>  [mm]f(x)=\bruch{2x^2-x}{x(x-1)}[/mm]   [mm]mit D_f=D_f(x)[/mm]
>  Ich hab die
> Funktion erstmal vereinfacht zu: [mm]~f(x)=\bruch{2x-1}{x-1}~[/mm]
>  und dann die 2.te Ableitung gebildet:
> [mm]~f''(x)=\bruch{2x-2}{(x-1)^4}~[/mm]

Hallo,

[mm] f''(x)=\bruch{2x-2}{(x-1)^4}=\bruch{2}{(x-1)^3} [/mm]  für [mm] x\not=1. [/mm]

>  
> Durch Nullsetzen kommt man auf den Wendepunkt bei [mm]~x_0=1~[/mm]
>  Aber der liegt außerhalb des Definitionsbereichs auf einer
> senkrechten Asymptote.

Also gibt es keinen Wendepunkt, denn was sollte ein Wendepunkt außerhalb des Definitionsbereiches sein?



> Und zum Nachweis der Punktsymmertie zu einem algemeinen
> Punkt P, braucht man ja den Wert [mm]~y_0~,[/mm] um mit der
> [mm]Formel:~f(x_0-x)+f(x_0+x)=2y_0~[/mm] die Symmetrie nachweisen zu
> können.
>  
> Edit: Ich hab jetzt einfach mal auf gut Glück die Formel
> angewendet und siehe da:
> Als Lösung kommt der Punkt (1/1,5) raus, was stimmen
> könnte, wenn man den Graphen anschaut.

Ich weiß jetzt ja nicht, was Du "auf gut Glück" getan hast.
Wenn aber der Graph wirklich punktsymmetrisch ist zu (1/1,5),
muß für alle x [mm] \in \ID [/mm] gelten:

f(1-x)+f(1+x)=2*1,5=3.

Gilt es?

Gruß v. Angela

Bezug
                
Bezug
Symmetrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:29 Sa 17.03.2007
Autor: ONeil

Danke für den Tipp, denn mein einstetzen auf gut Glück war falsch.
Hab das ganze jetzt nochmal für [mm] ~x_0=1~ [/mm] nachgerechnet und für [mm] ~y_0=2~ [/mm] erhalten. Das passt auch exakt in den Graphen.

Edit: Das mit der 2.Ableitung war unnötig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]