matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenSymmetrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Symmetrie
Symmetrie < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Symmetrie: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:29 Mi 22.11.2006
Autor: aleskos

Aufgabe
Geg: [mm] f_{b}(x)=-1+\bruch{b}{x}+\bruch{1}{2x²} [/mm]

Zeigen Sie: [mm] f_{b}(-x)=f_{-b}(x) [/mm]

Was bedeutet das für den Verlauf der Grafen [mm] G_{b} [/mm] und [mm] G_{-b}? [/mm]

Hallo erstmal,

kann mir jmd. zeigen, wie man es richtig macht?

Danke im Voraus!

Grüße
aleskos








        
Bezug
Symmetrie: Tipp
Status: (Antwort) fertig Status 
Datum: 14:53 Mi 22.11.2006
Autor: informix

Hallo aleskos,

> Geg: [mm]f_{b}(x)=-1+\bruch{b}{x}+\bruch{1}{2x²}[/mm]
>  
> Zeigen Sie: [mm]f_{b}(-x)=f_{-b}(x)[/mm]
>  
> Was bedeutet das für den Verlauf der Grafen [mm]G_{b}[/mm] und
> [mm]G_{-b}?[/mm]
>  
> Hallo erstmal,
>  
> kann mir jmd. zeigen, wie man es richtig macht?
>

Um diesen Term: [mm] $f_{-b}(-x)$ [/mm] zu erhalten, musst du doch nur im Term für [mm] $f_{b}(x)$ [/mm] das Vorzeichen vor dem b und dem x ändern und dann nachschauen, ob oder was sich ändert.
Vorsicht: auf Klammern achten!


Gruß informix

Bezug
                
Bezug
Symmetrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 Mi 22.11.2006
Autor: aleskos

aahhhh okay!
gut, das krieg ich jetzt hin. Prinzip ist klar!
Vielen Dank.

Nun hätte ich noch eine Frgae zu der Symmetrie.

Geg: [mm] f_{a}(x)=\bruch{8(x-3)}{x²-6x+a} [/mm]

Weisen Sie nach, dass alle Grafen [mm] G_{a} [/mm] punktsymmetrisch zum Punkt W(3/0) sind.

Wie geht sowas?

Bezug
                        
Bezug
Symmetrie: MatheBank!
Status: (Antwort) fertig Status 
Datum: 15:19 Mi 22.11.2006
Autor: informix

Hallo aleskos,

> aahhhh okay!
>  gut, das krieg ich jetzt hin. Prinzip ist klar!
>  Vielen Dank.
>  
> Nun hätte ich noch eine Frgae zu der Symmetrie.
>
> Geg: [mm]f_{a}(x)=\bruch{8(x-3)}{x²-6x+a}[/mm]
>  
> Weisen Sie nach, dass alle Grafen [mm]G_{a}[/mm] punktsymmetrisch
> zum Punkt W(3/0) sind.
>  
> Wie geht sowas?

[guckstduhier] MBsymmetrische Funktion

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]