matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikSwap
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Finanzmathematik" - Swap
Swap < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Swap: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 09:57 So 30.10.2011
Autor: KomplexKompliziert

Aufgabe
Eine Bank, die eine long-Position in einer festverzinslichen Anleihe hat, kann das Zinsänderungsrisiko dieser Anleihe mit einem Swapgeschäft weitgehend reduzieren.
Nehmen wir an, die Anleihe zahlt einen jährlichen Kupon von 5%, bei einer Laufzeit von 10 Jahren. Die nächste Kuponzahlung erfolgt heute in einem Jahr.
Die Bank schließt heute einen Payer-Swap ab, bei dem sie 10 Jahre lang jährlich den heutigen fairen Swapsatz 4,5% zahlt und den jeweiligen variablen Zinssatz empfängt. Es handelt sich also um einen Tausch von Zinszahlungen.
Aus Sicht der Bank verbleibt damit aus beiden Geschäften zusammen ein jährliches Zahlungssaldo von +0,5% (bezogen auf den Nominalbetrag) auf der fixen Seite und der jährliche Zahlungseingang der variablen Zinszahlungen.
Das Zinsänderungsrisiko dieser Zahlung ist deutlich geringer als das ursprüngliche Zinsänderungsrisiko.

Hallo zusammen!
ich verstehe das Beispiel nicht.
Also, die Bank befindet sich in einer long Position einer Anleihe, dann verliert die Anleihe aus Sicht der Bank an Wert, wenn die Rendite steigt --> Zinsänderungsrisiko.
Payer-Swap: Die Bank schließt nun einen Payer-Swap ab. Sie zahlt an den Emittenten des Swaps 10 Jahre lang jährlich den heutigen fairen Swapsatz von 4,5%. Ist das der Zinssatz z.B. des Euribors zum heutigen Zeitpunkt?
Als Gegenleistung empfängt die Bank den variablen Zinssatz, z.B. den Euribor.

Aus Sicht der Bank verbleibt damit aus beiden Geschäften zusammen ein jährlicher Zahlungssaldo von +0,5% (bezogen auf den Nominalbetrag).
D.h. die Bank hat jetzt nur noch 0,5 % feste Zinsen. Ich krieg da jetzt irgendwie keinen Zusammenhang von den 0,5% zum Zinsänderungsrisiko hin

Vielen Dank schon im Voraus

        
Bezug
Swap: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 So 30.10.2011
Autor: Staffan

Hallo,


aus meiner Sicht dazu folgendes: Wie Du schon sagst, besteht das Zinsänderungsrisiko in der Änderung des Marktwerts der Anleihe, der dem jeweils aktuellen Barwert oder Cashflow der jährlichen Zinszahlungen und  der Rückzahlung der Anleihe am Ende der Laufzeit entspricht. Durch den Payer-Swap wird die Bank verpflichtet, für den Rest der Laufzeit der Anleihe einen festen Zinssatz von 4,5% pro Jahr (swap rate)  zu zahlen, wozu sie den größten Teil der Einnahmen von 5% aus der Anleihe verwendet, und erhält im Gegenzug einen variablen Zins. Swap rates sind Zinssätze, die  von solche Swaps anbietenden Banken quotiert werden; man kann sie auf entsprechenden Websites oder in der Wirtschaftspresse finden. Die Zinssätze sind Festzinssätze, die nicht aus dem Euribor hergeleitet werden, und für Zeiträume von z. B. 1, 5 oder 10 Jahren gelten. Die Gegenleistung bei diesen Swaps besteht in der Zahlung des 6-Monats-Euribors.
Hier tauscht die Bank wirtschaftlich eine festverzinsliche Anleihe mit einem Koupon von 5% p.a. gegen einen synthetischen Floater, für den sie den 6-Monats-Euribor + 0,5% erhält. Das Zinsänderungsrisiko ist damit geringer, weil sich der Barwert jetzt aus der jeweiligen Euriborlaufzeit von 6 Monaten und den 0,5% bezogen auf die Gesamtlaufzeit gegenüber vorher 5% ermittelt. Zum Zeitpunkt der Festlegung des jeweiligen Euriborsatzes ist das Kursrisiko bezogen darauf = 0.  Das bedeutet, die Änderungen des Cashflows/Marktwerts und damit das Zinsänderungsrisiko (das unabhängig von einem etwaigen Bonitätsrisiko zu bewerten ist) sind geringer.


Gruß
Staffan

Bezug
                
Bezug
Swap: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:53 Mo 31.10.2011
Autor: KomplexKompliziert

Super! Vielen vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]