matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraSurjektive/Injektive Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Surjektive/Injektive Abbildung
Surjektive/Injektive Abbildung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Surjektive/Injektive Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:30 Do 26.10.2006
Autor: Leader

Aufgabe
Seien f : X [mm] \to [/mm] Y und g : Y [mm] \to [/mm] Z Abbildungen. Zeigen Sie:

a)  g [mm] \circ [/mm] f ist injektiv  [mm] \to [/mm]  f ist injektiv
b)  g [mm] \circ [/mm] f ist surjektiv  [mm] \to [/mm]  g ist surjektiv

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Wir sollen die Richtigkeit dieser beiden Aussagen zeigen, also beweisen. Ich bin bisher immer nur inhaltlich an das Problem herangegangen und auf keine Lösung gestoßen. Unser Vorlesender gab uns nun einen kleinen Wink: Man könne dies sehr schnell über die Definition von Injektiv/Surjektiv beweisen. Jetzt weiß ich aber immer noch nicht weiter.

Zumal ich die Definition von Injektiv auch nicht wirklich nachvollziehen kann.

Wir haben injektiv wie folgt definiert: Für alle x und x' in einer Menge X gilt: Wenn f(x) = f(x') dann gilt: x = x'.  

Das versteh ich schon nicht, denn da x und x' in X sind, kann doch niemals gelten: x = x' (das hieße ja, in x treten zwei gleiche Elemente auf, das ist ja dann gar keine Funktion mehr).

Hat jemand eine Idee, wie man die Aussagen zeigen kann? Ich vermute schon, dass das irgendwie über die Definition von Surjektiv / Injektiv geht, aber ich weiß nicht wie.


Danke an euch,
Grüße,
Leader.

        
Bezug
Surjektive/Injektive Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:08 Do 26.10.2006
Autor: angela.h.b.


> Seien f : X [mm]\to[/mm] Y und g : Y [mm]\to[/mm] Z Abbildungen. Zeigen Sie:
>  
> a)  g [mm]\circ[/mm] f ist injektiv  [mm]\to[/mm]  f ist injektiv
>  b)  g [mm]\circ[/mm] f ist surjektiv  [mm]\to[/mm]  g ist surjektiv
>  
>
> Wir sollen die Richtigkeit dieser beiden Aussagen zeigen,
> also beweisen. Ich bin bisher immer nur inhaltlich an das
> Problem herangegangen und auf keine Lösung gestoßen. Unser
> Vorlesender gab uns nun einen kleinen Wink: Man könne dies
> sehr schnell über die Definition von Injektiv/Surjektiv
> beweisen. Jetzt weiß ich aber immer noch nicht weiter.
>  
> Zumal ich die Definition von Injektiv auch nicht wirklich
> nachvollziehen kann.

Hallo,

wie schön!
Nein - mit schön meine ich nicht, daß es schön ist, daß Du die Definitionen nicht verstehst. Sondern daß Dir klar geworden ist, daß das der erste Schritt zur Lösung der Aufgabe ist.

Das ganze Drama startet ja bereits mit der Funktion
f: X ==> Y.

Überlegen wir, was wir hier haben: Eine Startmenge (Definitionsmenge) X und eine Zielmenge Y.

Funktion, das sagt uns: jedes [mm] x\in [/mm] X wird auf genau ein [mm] y\in [/mm] Y abgebildet.

Der Gehalt dieser Aussage ist der: zu jedem x gehört ein f(x), aber auch wirklich nur ein einziges.
Es kann also nicht gleichzeitig f(3)=937 und f(3)=-12 sein.

Ich mache mir gerne Vorstellungen und kleine Bildchen, leider bin ich ein Computeranalphabet, daher muß ich es in Worten erklären:

Mal Dir mal eine kleine Menge X auf mit Pünktchen, etwas entfernt eine etwas größere Pünktchen-Menge Y.
Funktion bedeutet: von jedem x-Pünktchen wird ein Pfeil abgeworfen (einzeichnen!) auf irgendein Ziel in der Menge Y. Aber von keinem x-Pünktchen werden zwei Pfeile abgeworfen.

Wenn Du mir bisher folgen konntest wirst Du feststellen, daß das da
>denn da x und x' in X sind, kann doch niemals gelten: x = x' (das hieße ja, >in x treten zwei gleiche Elemente auf, das ist ja dann gar keine Funktion >mehr).
Blödsinn ist, und Du bist einen Schritt weiter.

Nun zur Injektivität:
f: X --> Y Funktion.

> Wir haben injektiv wie folgt definiert: Für alle x und x'
> in einer Menge X gilt: Wenn f(x) = f(x') dann gilt: x = x'.

In Worte übersetzt: Funktionswerte gleich ==> Startwerte (Argumente) gleich.
Oder, was dasselbe aussagt: Startwerte verschieden ==> Funktionswerte verschieden.

Im Pünktchenbild erkennst Du injektive Funktionen daran, daß jeder Punkt aus der Zielmenge, sofern er überhaupt getroffen wird, nur von einem Pfeil getroffen wird.

Nun zur Sujektivität:
F ist surjektiv <==> für alle [mm] y\in [/mm] Y gibt es ein [mm] x\in [/mm] X mit f(x) = y.

In Worten: zu jedem Element der Zielmenge findet man eines der Ausgangmenge, welches darauf abgebildet wird.

Im Pünktchenbild: bei jedem y-Pünktchen landet mindestens ein Pfeil.

Nun kurz zur eigentlichen Aufgabe:

Seien f : X [mm]\to[/mm] Y und g : Y [mm]\to[/mm] Z Abbildungen. Zeigen Sie:

>  
> a)  g [mm]\circ[/mm] f ist injektiv  [mm]\to[/mm]  f ist injektiv
>  b)  g [mm]\circ[/mm] f ist surjektiv  [mm]\to[/mm]  g ist surjektiv


Du hast drei Mengen X, Y, Z.

f bildet von X in Y ab, g von Y in Z.

Mein Tip wäre, daß Du Dir zunächst den Sachverhalt mal aufmalst mit den Bildchen, die ich so gerne mag. Drei Mengen, und die Abbildungen so, daß
g [mm]\circ[/mm] f  injektiv ist.
Dann mach' Dir klar, warum g [mm]\circ[/mm] f injektiv nicht funktioniert, wenn f nicht injektiv ist.
Wenn Dir das klar ist, brauchst Du es "nur noch" aufschreiben.

Bestimmt hilft dir dann auch jemand weiter. Zunächst ist wichtig, daß Du die Eigenschaften "injektiv" und "surjektiv" wirklich verstehst.

Gruß v. Angela



Bezug
                
Bezug
Surjektive/Injektive Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:18 Do 26.10.2006
Autor: Leader

Hallo Angela,


vielen Dank für die so umfangreiche Erklärung. Ich habe jetzt nicht nur die Injektivität/Surjektivität besser verstanden, sondern nach einigen Skizzen auch inhaltlich erkannt, warum die Aussagen wahr sein müssen. Vielen Dank für die Antwort!



Freundliche Grüße,
Leader.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]