matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Supremum und Infimum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Supremum und Infimum
Supremum und Infimum < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Supremum und Infimum: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:59 Mi 15.11.2006
Autor: Mustermax

Aufgabe
Aufgabe 1)

Berechnen Sie gegebenenfalls Supremum, Infimum, Maximum und Minimum der folgenden Teilmengen von [mm] \IR: [/mm]

[mm] \{q^n : n \in \IN\}, [/mm] mit 0<q<1
[mm] \{b^n : n \in \IN\}, [/mm] mit b>1
[mm] \{(-1)^n + \bruch{1}{n} : n \in \IN\} [/mm]
[mm] \{(-1)^n + 2^{-m} : n,m \in \IN\} [/mm]

Aufgabe 2)

a) Beweisen Sie: Sind A,B [mm] \subseteq \IR [/mm] mit der Eigenschaft a [mm] \le [/mm] b für alle a [mm] \in [/mm] A, b [mm] \in [/mm] B.
Dann existieren sup(A) und inf(B) und es gilt sup(A) [mm] \le [/mm] inf(B)
b) Zeigen sie: Ist [mm] (I_{n})_{n\in\IN} [/mm] eine Intervallschachtelung mit [mm] I_{n} [/mm] = [mm] [a_{n}, b_{n}] [/mm] für alle n [mm] \in \IN, [/mm] so existert [mm] x:=sup(\{ a_{n} : n \in \IN \}) [/mm] und x ist der innere Punkt der Intervallschachtelung.
Gilt auch [mm] x:=inf(\{ b_{n} : n \in \IN \})? [/mm]

Aufgabe 1)

Die Berechnung ist kein Problem, ich habe folgende Ergebnisse:

(1)
sup{ [mm] q^n [/mm] } = 1
inf{ [mm] q^n [/mm] } = 0

(2)
sup{ [mm] b^n [/mm] } = [mm] +\infty [/mm]
inf{ [mm] b^n [/mm] } = 1

(3)
sup{ ... } = [mm] 1\bruch{1}{2} [/mm]
inf{ ... } = -1

(4)
sup{ ... } = [mm] 1\bruch{1}{4} [/mm]
inf{ ... } = [mm] -\bruch{3}{4} [/mm]

Allerdings sind das ja quasi nur "Vermutungen"; ich weiß leider nicht, wie ich beweise, dass es sich um Supremum / Infimum handelt. Mir erscheint das logisch, und da in der Aufgabenstellung nur "berechnen Sie" steht, habe ich mich schon gefreut, in den offiziellen Tips steht aber sogar was von Induktion und Archimedischem Axiom. Werde mir das nochmal genauer angucken, aber so spontan hab ich einfach absolut 0 Ahnung... wie beweise ich Supremum / Infimum, durch Induktion? Wie zeige ich das dann?

Aufgabe 2)

Hier ist's ganz mies. Ich behaupte erstmal, dass unser Prof einfach gesagt hätte "das ist ja trivial, den Beweis sparen wir uns", und wir dürfen's dann doch machen.

a)
Beweis durch Widerspruch. A und B sind außerdem nicht leer (was mach ich'n dann?).
Behauptung: sup(A) > inf(B)
Beweis: [mm] \exists a_{s} \in [/mm] A mit [mm] a_{s} [/mm] = max(A) folgt [mm] a_{s} [/mm] > inf(B) wg. Aufgabenstellung: a [mm] \le [/mm] b für alle a [mm] \in [/mm] A, b [mm] \in [/mm] B ist das aber ein Widerspruch.
Der Beweis gilt aber nur, falls das Maximum von A auch in A enthalten ist - falls nicht, dafür habe ich keinen Ansatz.
b)
Bin noch dabei, hab grad was bei Wiki gefunden was sich gut anhört.

Jedenfalls, wenn mir jemand weiterhelfen könnte wär ich glücklich. Ist zwar nicht so, dass ich überhaupt keine Ahnung habe, aber ich finde es ehrlich gesagt ziemlich schwer...

Recht herzlichen Dank für die Aufmerksamkeit.

        
Bezug
Supremum und Infimum: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Sa 18.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]