matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesSupremum/Infimum einer Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis-Sonstiges" - Supremum/Infimum einer Menge
Supremum/Infimum einer Menge < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Supremum/Infimum einer Menge: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:19 Sa 11.11.2006
Autor: sirdante

Aufgabe
Bestimme sup(X) und inf(X), falls existent. X = [mm] \{x \in \IR | x = \bruch{1}{2n}, n \in \IN \} [/mm]

Hallöchen!

Habe diese Sache mit dem Supremum und Infimum ganz gut verstanden, habe allerdings noch ein kleines Problem. Aber zunächst meine Vorgehensweise:

x = [mm] \bruch{1}{2n}, [/mm] n [mm] \in \IN [/mm]   =>   [mm] \bruch{1}{2} \ge \bruch{1}{2n} [/mm] = x  [mm] \forall [/mm] n [mm] \in \IN [/mm]   =>   [mm] \bruch{1}{2} [/mm]   ist obere Schranke von X

Außerdem  [mm] \bruch{1}{2} \in [/mm] X, also   [mm] \bruch{1}{2} [/mm] = max(X) = sup(X)

Beim Infimum habe ich nun meine Probleme:

Behauptung: inf(X) = 0        
Annahme: es gibt eine größere untere Schranke a von X
=>  a > 0 und a [mm] \le [/mm] x  [mm] \forall [/mm] x [mm] \in [/mm] X   =>   inf(X) = [mm] 0+\varepsilon [/mm] , [mm] \varepsilon [/mm] > 0

aber nun bekomme ich Probleme... ich würde dies natürlich gerne zum Widerspruch führen... aber wie mache ich das? Meine Idee: Ich nehme ein neues Element b, welches kleiner als  [mm] 0+\varepsilon [/mm] ist und zeige, dass es in X liegt.

zb: b := [mm] \bruch{\varepsilon}{2} [/mm]

irgendwie verhakle ich mich da... kann mir jemand zeigen wie ich das mache? oder bin ich da auf dem falschen Dampfer?

Ich danke Euch im vorraus!

        
Bezug
Supremum/Infimum einer Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 01:47 So 12.11.2006
Autor: Martin243

Hallo,

du bist schon auf dem richtigen Dampfer.

Wenn wir annehmen, dass [mm] $\inf(X)=\varepsilon$, [/mm] dann müssen wir ein [mm] $n\in \IN$ [/mm] finden, so dass $x$ unser Infimum unterschreitet.

Sei [mm] $n_0 [/mm] := [mm] \bruch{1}{\varepsilon}$. [/mm]
Dann gilt: [mm] $x_0 [/mm] = [mm] \bruch{1}{2n_0} [/mm] = [mm] \bruch{\varepsilon}{2} [/mm] < [mm] \varepsilon$. [/mm]
Das widerspricht aber unserer Annahme, dass [mm] $\varepsilon>0$ [/mm] das Infimum unserer Menge ist. Also war unsere Annahme falsch!


Gruß
Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]