matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreSupremum/Infimum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mengenlehre" - Supremum/Infimum
Supremum/Infimum < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Supremum/Infimum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:37 Mi 07.11.2012
Autor: Zero_112

Aufgabe
Bestimmen Sie das Infimum und das Supremum der Menge und geben sie, falls vorhanden, Minimum oder Maximum an.

A := { [mm] \bruch{x}{1+3x} [/mm] : x > - [mm] \bruch{1}{3} [/mm] }

Ich hab nun das Supremum sup(A) = [mm] \bruch{1}{3} [/mm] bestimmt. Wir sollen nun noch beweisen, dass es wirklich das Supremum ist und hier dachte ich mir, dass es ja keine kleinere obere Schranke als [mm] \bruch{1}{3} [/mm] geben darf. Man könnte nun einen Widerspruchsbeweis durchführen, indem ich annehme, es gäbe doch eine kleinere obere Schranke:

[mm] \exists [/mm] d [mm] \in \IR [/mm] mit d > 0

[mm] \bruch{1}{3} [/mm] - d [mm] \ge \bruch{x}{1+3x}, [/mm] wobei [mm] \bruch{x}{1+3x} [/mm]  < [mm] \bruch{1}{3} [/mm]

<=> -d [mm] \ge \bruch{x}{1+3x} [/mm] - [mm] \bruch{1}{3} [/mm]
<=>  d [mm] \le [/mm] - [mm] \bruch{x}{1+3x} [/mm] + [mm] \bruch{1}{3} [/mm]

Ich wollte nun irgendwie versuchen, dass das ganze zu d > 0 im Widerspruch steht, da dies die einzige Beweismöglichkeit ist, die ich diesbezüglich kennengelernt habe. Nur irgendwie komme hier damit nicht weiter.
Für [mm] \bruch{x}{1+3x} [/mm] kommt etwas kleiner 1/3 heraus, demnach kommt für - [mm] \bruch{x}{1+3x} [/mm] + [mm] \bruch{1}{3} [/mm] irgendetwas zwischen 0 und [mm] \bruch{1}{3} [/mm] heraus und das macht die Aussage, dass d kleinergleich den Wert ist ja nicht unwahr, da d > 0....Ich komme hier einfach nicht weiter :/

und wenn allgemein ein Infimum/Supremum ins Unendliche läuft, wie beweist man dann so etwas? (Grenzwertbetrachtung hatten wir noch nicht, deshalb darf ich das nicht anwenden)

        
Bezug
Supremum/Infimum: Antwort
Status: (Antwort) fertig Status 
Datum: 09:18 Do 08.11.2012
Autor: schachuzipus

Hallo Zero_112Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

,


> Bestimmen Sie das Infimum und das Supremum der Menge und
> geben sie, falls vorhanden, Minimum oder Maximum an.
>  
> A := { [mm]\bruch{x}{1+3x}[/mm] : x > - [mm]\bruch{1}{3}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

>  Ich hab nun das Supremum sup(A) = [mm]\bruch{1}{3}[/mm] bestimmt. [ok]
> Wir sollen nun noch beweisen, dass es wirklich das Supremum
> ist und hier dachte ich mir, dass es ja keine kleinere
> obere Schranke als [mm]\bruch{1}{3}[/mm] geben darf. Man könnte nun
> einen Widerspruchsbeweis durchführen, indem ich annehme,
> es gäbe doch eine kleinere obere Schranke:
>  
> [mm]\exists[/mm] d [mm]\in \IR[/mm] mit d > 0
>
> [mm]\bruch{1}{3}[/mm] - d [mm]\ge \bruch{x}{1+3x},[/mm] wobei [mm]\bruch{x}{1+3x}[/mm]  < [mm]\bruch{1}{3}[/mm]

?? wobei [mm]x>-1/3[/mm]

>  
> <=> -d [mm]\ge \bruch{x}{1+3x}[/mm] - [mm]\bruch{1}{3}[/mm]
> <=>  d [mm]\le[/mm] - [mm]\bruch{x}{1+3x}[/mm] + [mm]\bruch{1}{3}[/mm]

>  
> Ich wollte nun irgendwie versuchen, dass das ganze zu d > 0
> im Widerspruch steht, da dies die einzige
> Beweismöglichkeit ist, die ich diesbezüglich
> kennengelernt habe. Nur irgendwie komme hier damit nicht
> weiter.
> Für [mm]\bruch{x}{1+3x}[/mm] kommt etwas kleiner 1/3 heraus,
> demnach kommt für - [mm]\bruch{x}{1+3x}[/mm] + [mm]\bruch{1}{3}[/mm]
> irgendetwas zwischen 0 und [mm]\bruch{1}{3}[/mm] heraus und das
> macht die Aussage, dass d kleinergleich den Wert ist ja
> nicht unwahr, da d > 0....Ich komme hier einfach nicht
> weiter :/

Deine Überlegung ist gut!

Wenn es eine kleinere obere Schranke (als 1/3) - etwa [mm]\frac{1}{3}-d[/mm] mit [mm]d>0[/mm] - gäbe, müsste ja für alle [mm]x>-\frac{1}{3}[/mm] gelten, dass [mm]\frac{x}{1+3x}\le\frac{1}{3}-d[/mm]

Das kann man zum Widerspruch führen.

Finde ein [mm]x>-\frac{1}{3}[/mm], so dass [mm]\frac{x}{1+3x} \ \red{>} \ \frac{1}{3}-d[/mm] (*) gilt

[mm]x>\frac{1}{9d}-\frac{1}{3}[/mm] sollte es tun ...

Das habe ich gefunden, indem ich (*) nach x aufgelöst habe ...

>  
> und wenn allgemein ein Infimum/Supremum ins Unendliche
> läuft, wie beweist man dann so etwas?

Zb. für Sup: Nimm an, es gäbe ein (beliebiges endliches) Supremum [mm]M[/mm] und zeige, dass es dann ein x gibt, so dass M überschritten wird.

Analog für Inf

> (Grenzwertbetrachtung hatten wir noch nicht, deshalb darf
> ich das nicht anwenden)

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]