matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesSupremum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Supremum
Supremum < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Supremum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:27 Di 13.11.2007
Autor: pfeffer2004

Aufgabe
Für A,B [mm] \subseteq \IR [/mm] , x [mm] \in \IR [/mm]  setzen wir

A+B:= { a+b | a [mm] \in [/mm] A,  b [mm] \in [/mm] B }
AB:= { ab | a [mm] \in [/mm] A, b [mm] \in [/mm] B }
xA:= { xa | a [mm] \in [/mm] A }

Zeigen Sie für nach oben beschränkte [mm] \emptyset \not= [/mm] A,B [mm] \subseteq \IR [/mm]

sup(A+B) = supA + supB

sup(AB) = supAsupB, falls A, B [mm] \subseteq [0,\infty[ [/mm]

sup(xA) = xsupA für [mm] x\ge [/mm] 0

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Eigentlich ist es ja klar das das gilt.

A={1,2} B={3,4}

A+B= {4,5,6}

Aber wie schreibt man das in einem Mathematischen Beweis auf.

Für die anderen zwei kann man auch noch so Beispiele finden, aber ich bräuchte einen Beweis.

Hat da jemand ein Tipp für mich, denn mir fällt im Moment gar nichts gescheites ein.

        
Bezug
Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 Mi 14.11.2007
Autor: angela.h.b.


> Für A,B [mm]\subseteq \IR[/mm] , x [mm]\in \IR[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

  setzen wir

>  
> A+B:= { a+b | a [mm]\in[/mm] A,  b [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

B }

>  AB:= { ab | a [mm]\in[/mm] A, b [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

B }

>  xA:= { xa | a [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

A }

>  
> Zeigen Sie für nach oben beschränkte [mm]\emptyset \not=[/mm] A,B
> [mm]\subseteq \IR[/mm]
>  
> sup(A+B) = supA + supB

> Eigentlich ist es ja klar das das gilt.

Hallo,

das wird als Beweis nicht so überzeugen, genausowenig wie ein Beispiel, welches für einen selbst aber trotzdem sehr nützlich ist.

Für den Beweis solltest Du erstmal über die Voraussetzung nachdenken.

A,B sind beschränkte Mengen.
Daraus kannst Du direkt etwas über die Existenz (!) v. Suprema folgern.

Zeigen mußt Du dann sup(A+B) = supA + supB.

Dies beinhaltet zweierlei:

1. supA + supB ist eine obere Schranke von A+B
2. es gibt keine kleinere obere Schranke von A+b als supA + supB

Diese Teilaussagen mußt Du zeigen.

Für 1. nimm Dir ein c [mm] \in [/mm] A+B her und mach glaubhaft, daß es [mm] \le [/mm] supA + supB ist.

Gruß v. Angela








Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]