matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesSupremum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Supremum
Supremum < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Supremum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:26 Mi 31.10.2007
Autor: glebi

Aufgabe
Seien A,B beschränkte, nicht-leere Teil-
mengen von [mm] \IR. [/mm] Sei A + B: = {a + b; a [mm] \in [/mm] A; b [mm] \in [/mm] B} : Zeigen Sie, daß
sup(A + B) = supA + supB: (6 Punkte)
Bestimmen Sie inf und sup von

M: ={ 1/n+1/m; n,m [mm] \in \IN [/mm] }



(2 Punkte)

also bei der ersten, das scheint mir offensichtlich, weiß ncih was ich da machen soll... bei der 2. habe ich mir gedacht

supM =2, da ja 1/1+1/1=2 ist und
infM=0, da ja 1/ [mm] \infty [/mm] + 1/ [mm] \infty [/mm] gegen null geht

stimmt das? kannmir jmd eine hilfe zum ansatz für den ersten aufgabenteil geben?

        
Bezug
Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 01:52 Mi 31.10.2007
Autor: Gonozal_IX

Hallo Gottlieb,

zum ersten Teil der Aufgabe:

sup(A+B) ist ja die kleinste obere Schranke von der Menge A+B. Du musst nun also zeigen, dass sup(A) + sup(B) genau dies erfüllt:

1.) Zeige, dass sup(A) + sup(B) obere Schranke ist
2.) Zeige, dass es keine obere Schranke gibt, die kleiner als sup(A) + sup(B) ist.


Analog musst du das beim zweiten Aufgabenteil machen. Deine Vermutungen stimmen, allerdings musst du es noch nach dem gleichen Schema zeigen wie bei der ersten. Also erst zeigen, dass es jeweils eine Schranke ist, und dann zeigen, dass es die kleinste bzw. grösste Schranke ist.

MfG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]