matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenSummenwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Summenwert
Summenwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summenwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:41 Sa 03.02.2007
Autor: Casey16

Aufgabe
Hallo!

Ich soll hier den Summenwert der unendlichen Reihe berechnen, nur ich verstehe das einfach nicht, ich finde allein das zeichen macht mir schon probleme. ich verstehe die ganzen zeichen oben und unten auch nicht. ich hoffe ihr könnt mir helfen!

Aufgabe:

[mm] \summe_{i=1}^{\infty} [/mm] 1/ (3i-2)(3i+1)

Hilfe!

wäre super wenn ihr mir helfen könntet

        
Bezug
Summenwert: Antwort
Status: (Antwort) fertig Status 
Datum: 04:31 Sa 03.02.2007
Autor: leduart

Hallo Casey
Erster Schritt: das produkt [mm] zerlegen:\bruch{1}{(3i-2)(3i+1)}=\bruch{A}{3i-1}+\bruch{B}{3i+1} [/mm]
Wenn du das hast, schreib dir die ersten paar etwa bis i=3 oder 4 mal hin, dann siehst du, dass es eine sog. Teleskopsumme ist, also es hebt sich fast alles weg, bis auf den ersten und letzten Summanden. Und dann bist du schon fertig.
Gruss leduart

Bezug
                
Bezug
Summenwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:53 So 04.02.2007
Autor: Casey16

okay ich hab das zerlegt dann muss ich für die i einfach 3,4,5 einsetzen?

also

3/ 3*3-1 + 3/3*3+1

4/3*4-1 + 4/3*4+1

ist das so richtig?

Bezug
                        
Bezug
Summenwert: Partialbruchzerlegung
Status: (Antwort) fertig Status 
Datum: 01:22 So 04.02.2007
Autor: Loddar

Hallo Casey!


Aus Deine antwort geht aber die entsprechende Partialbruchzerlegung nicht hervor. Hast Du diese denn auch durchgeführt?

[mm] $\bruch{1}{(3i-2)*(3i+1)} [/mm] \ = \ [mm] \bruch{\bruch{1}{3}}{3i-2}+\bruch{-\bruch{1}{3}}{3i+1} [/mm] \ = \ [mm] \bruch{1}{3}*\left(\bruch{1}{3i-2}-\bruch{1}{3i+1}\right)$ [/mm]


Und nun mal die ersten 4,5 Glieder einsetzen und untersuchen, welche Terme übrig bleiben.


Gruß
Loddar


Bezug
                                
Bezug
Summenwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:08 So 04.02.2007
Autor: Casey16

ehm ok ich probiers

[mm] s_n=\summe_{i=1}^{\infty}\bruch{1}{(3i-2)(3i+1)}= [/mm]  

[mm] \bruch{1}{3}*\bruch{1}{(3i-2)}-\bruch{1}{(3i+1)}= [/mm]

1/3*(1-1/4)=1/4

1/3*(1/4-1/7)=1/28

1/3*(1/7-1/10)=1/70

1/3*(1/10-1/13)=1/130

ich hab die ersten 4 glieder  i=1,2,3,4 eingesetzt und das rausbekommen, nur ich meinte irgendwas ist nicht richtig und irgendwo müsste doch was mit [mm] \limes_{n \to \infty}s_n [/mm] irgendwo stehen. :-( hilfeee


Bezug
                                        
Bezug
Summenwert: anders aufschreiben
Status: (Antwort) fertig Status 
Datum: 08:24 So 04.02.2007
Autor: Loddar

Hallo Casey!


Schreib' Dir das mal anders auf (Du brauchst dafür die einzelnen Summen / Differenzen gar nicht ausrechnen):


[mm] $\summe_{i=1}^{\infty}\bruch{1}{(3i-2)*(3i+1)} [/mm] \ = \ [mm] \summe_{i=1}^{\infty}\bruch{1}{3}*\left(\bruch{1}{3i-2}-\bruch{1}{3i+1}\right) [/mm] \ = \ [mm] \bruch{1}{3}*\summe_{i=1}^{\infty}\left(\bruch{1}{3i-2}-\bruch{1}{3i+1}\right)$ [/mm]

$ \ = \ [mm] \bruch{1}{3}*\left[\underbrace{\left(\bruch{1}{3*1-2}-\bruch{1}{3*1+1}\right)}_{i=1} + \underbrace{\left(\bruch{1}{3*2-2}-\bruch{1}{3*2+1}\right)}_{i=2} + \underbrace{\left(\bruch{1}{3*3-2}-\bruch{1}{3*3+1}\right)}_{i=3} + \underbrace{\left(\bruch{1}{3*4-2}-\bruch{1}{3*4+1}\right)}_{i=4}+ \ ... \ \right]$ [/mm]

$ \ = \ [mm] \bruch{1}{3}*\left[\bruch{1}{1} \ \red{-\bruch{1}{4}} \ \red{ + \bruch{1}{4}} \ \blue{-\bruch{1}{7} + \bruch{1}{7}} \ \green{-\bruch{1}{10} +\bruch{1}{10}} \ - \bruch{1}{13} \ \pm \ ...\right]$ [/mm]

Und nun betrachte mal, was jeweils wegfällt bzw. ganz am Ende nur noch übrig bleibt. Das ist dann lediglich ein einziger Bruch in den eckigen Klammern.


Gruß
Loddar


Bezug
                                                
Bezug
Summenwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:25 So 04.02.2007
Autor: Casey16

das Einzige was in der eckigen Klammer übrig bleibt ist [mm] \bruch{1}{1} [/mm] und wenn man das mit [mm] \bruch{1}{3} [/mm] multipliziert bleibt [mm] \bruch{1}{3} [/mm] übrig.

Bezug
                                                        
Bezug
Summenwert: Richtig!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:56 Mo 05.02.2007
Autor: Loddar

Hallo Casey!


[daumenhoch] Richtig.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]