matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionSummenrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - Summenrechnung
Summenrechnung < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summenrechnung: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 13:31 Fr 27.10.2006
Autor: hiltrud

Aufgabe
Zeige: [mm] $n^2 \le 2^n [/mm] (n [mm] \in \IN [/mm] , n [mm] \not= [/mm] 3)$

[mm] $\summe_{k=1}^{n} (-1)^k [/mm] * [mm] k^2 [/mm] = [mm] (-1)^n* \vektor{n+1 \\ 2}$ [/mm]


hey komme mit dieser aufgabe nicht klar. ich habe keine ahnung was ich da anwenden muss bzw. wie das überhaupt gehen soll. ich hoffe mir kann da jemand helfen. wäre super nett,danke schon mal

        
Bezug
Summenrechnung: vollständige Induktion
Status: (Antwort) fertig Status 
Datum: 13:34 Fr 27.10.2006
Autor: Loddar

Hallo Hiltrud!


Beide Aufgaben schreien ja förmlich nach dem Beweisverfahren gemäß vollständiger Induktion.

Hilft dieser Hinweis bereits weiter?


Gruß
Loddar


Bezug
                
Bezug
Summenrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:41 Fr 27.10.2006
Autor: hiltrud

ach mensch, ich habs mir schon fast gedacht. da muss ich mich erstmal reinlesen....kannst du mir hier vielleicht den anfang zeigen?

Bezug
                        
Bezug
Summenrechnung: zu Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 14:06 Fr 27.10.2006
Autor: Loddar

Hallo Hiltrud!


Zeige ich es Dir mal an der 2. Aufgabe ...


Wir beginnen mit der Induktionsverankerung (auch Induktionsbeginn genannt), d.h. wir zeigen, dass die Behauptung für $n \ = \ 1$ gilt:

[mm] $\summe_{k=1}^{1} (-1)^k [/mm] * [mm] k^2 [/mm] \ = \ [mm] (-1)^1*1^2 [/mm] \ = \ (-1)*1 \ = \ -1$

[mm] $(-1)^1 \vektor{1+1 \\ 2} [/mm] \ = \ [mm] (-1)*\vektor{2\\2} [/mm] \ = \ -1*1 \ = \ -1$ [ok] Also erfüllt!


In der Induktionsvoraussetzung wird nun die Behauptung [mm] $\summe_{k=1}^{n} (-1)^k [/mm] * [mm] k^2 [/mm] = [mm] (-1)^n* \vektor{n+1 \\ 2}$ [/mm] für beliebiges $n_$ vorausgesetzt.


Und im Induktionsschritt wird nun gezeigt, dass dies auch für [mm] $n\red{+1}$ [/mm] gilt:

Zu zeigen:  [mm] $\summe_{k=1}^{n+1} (-1)^k [/mm] * [mm] k^2 [/mm] \ = \  [mm] (-1)^{n+1} *\vektor{n+1+1 \\ 2} [/mm] \ = \  [mm] (-1)^{n+1}* \vektor{n+2 \\ 2}$ [/mm]


[mm] $\summe_{k=1}^{n+1} (-1)^k [/mm] * [mm] k^2 [/mm] \ = \ [mm] \summe_{k=1}^{n} (-1)^k [/mm] * [mm] k^2+\summe_{k=n+1}^{n+1} (-1)^k [/mm] * [mm] k^2 [/mm] \ = \  \ = \ [mm] \blue{\summe_{k=1}^{n} (-1)^k * k^2}+(-1)^{n+1} *(n+1)^2 [/mm] \ = \ ...$

Für den blauen Term nun die Induktionsvoraussetzung einsetzen und weiter zusammenfassen bis zur Induktionsbehauptung.


Gruß
Loddar


Bezug
                                
Bezug
Summenrechnung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:18 Fr 27.10.2006
Autor: hiltrud

hey danke. also ab da bekomme ich es denke ich mal hin. aber wie soll das erste gehen? da geht das doch garnicht so. irgendwie versteh ich nicht wie das da gehen soll, da sist ja logisch

Bezug
                                        
Bezug
Summenrechnung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 So 29.10.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]