matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationSummenhäufigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Summenhäufigkeit
Summenhäufigkeit < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summenhäufigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:50 Di 15.11.2011
Autor: Sippox

Hallo,

in einem Chemie-Versuchsskript ist die relative Häufigkeit und die Summenhäufigkeit beschrieben.

relative Häufigkeit: h(M) = [mm] \bruch{dZ}{Z_{0}dM} [/mm]

mit M: Merkmalsgröße und [mm] Z_{0}: [/mm] Individuen

(In diesem Fall ist die Merkmalsgröße die Zeit und die Individuen werden durch die Konzentration dargestellt.)

Nun ist die Summenhäufigkeit als Integral der relativen Häufigkeit dargestellt.

Könnte mir dazu jemand anschaulich erklären, was ich darunter verstehe, wenn ich bis zu einem Punkt in einer Summenhäufigkeitsfunktion integriere?

Weiterhin frage ich mich: was sagt ein bestimmter Wert auf der Summenhäufigkeitsfunktion in der Funktion der relativen Häufigkeit aus?

Ich hoffe meine Frage ist nicht zu undeutlich und ich hab sie im richtigen Forum gestellt.

Vielen Dank!

Sippox

        
Bezug
Summenhäufigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Di 15.11.2011
Autor: donquijote


> Hallo,
>  
> in einem Chemie-Versuchsskript ist die relative Häufigkeit
> und die Summenhäufigkeit beschrieben.
>  
> relative Häufigkeit: h(M) = [mm]\bruch{dZ}{Z_{0}dM}[/mm]
>  
> mit M: Merkmalsgröße und [mm]Z_{0}:[/mm] Individuen
>  
> (In diesem Fall ist die Merkmalsgröße die Zeit und die
> Individuen werden durch die Konzentration dargestellt.)
>  
> Nun ist die Summenhäufigkeit als Integral der relativen
> Häufigkeit dargestellt.
>  
> Könnte mir dazu jemand anschaulich erklären, was ich
> darunter verstehe, wenn ich bis zu einem Punkt in einer
> Summenhäufigkeitsfunktion integriere?

Die Summenhäufigkeit gibt den Anteil der Individuen an, bei denen das Merkmal einen Wert [mm] $\le [/mm] M$ hat.

>
> Weiterhin frage ich mich: was sagt ein bestimmter Wert auf
> der Summenhäufigkeitsfunktion in der Funktion der
> relativen Häufigkeit aus?

Die relative Häufigkeit kann als Ableitung der Summenhäufigkeitsfunktion betrachtet werden, das heißt sie entspricht deren Steigung bzw. der Zunahme der Summenhäufigkeit. Einzelne Werte der Summenhäufigkeitsfunktion erlauben noch keine Aussage über die relative Häufigkeit.

>  
> Ich hoffe meine Frage ist nicht zu undeutlich und ich hab
> sie im richtigen Forum gestellt.
>  
> Vielen Dank!
>  
> Sippox


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]