matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesSummenformel für Potenzreihe gesucht
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - Summenformel für Potenzreihe gesucht
Summenformel für Potenzreihe gesucht < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summenformel für Potenzreihe gesucht: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:11 Mi 11.08.2004
Autor: leaven

Hallo liebe Boarduser,

habe eine neue math. Frage. Gibt es eigentlich eine Summenformel für diese Potenzreihe:

[mm] \summe_{k=1}^n k^k = 1^1 + 2^2 + 3^3 + 4^4 + ... + {(n - 2)}^{(n - 2)} + {(n - 1)}^{(n - 1)} + n^n \qquad k,n \in\IN [/mm]

Dabei denke ich an eine Summenformel in der Art wie beispielsweise für die Summe der 5. Potenzen:

[mm] \summe_{k=1}^{n} k^5 = 1^5 + 2^5 + 3^5 + 4^5 + ... = \frac{n^2}{6} \left(n^4 + 3n^3 + \frac{5n^2}{2} - \frac{1}{2} \right) [/mm]

Ich bin KEIN Schüler oder Student, sondern interessiere mich nur als Privatperson ein wenig für Mathematik.

Ich habe diese Frage noch in keinem weiteren Forum gestellt.

Gruß
leaven


        
Bezug
Summenformel für Potenzreihe gesucht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:38 Do 12.08.2004
Autor: Josef

Hallo leaven,

von diesem Gebiet verstehe ich leider nichts, aber vielleicht dir diese Fundstelle weiter. Hier findest du alles über Potenzreichen und Summenformeln:

[]www.lrz-muenchen.de/~hr/numb/potenzsummen.pdf


[]www.google.de/search?q=summenformel+potenzreihe&ie=UTF-8&hl=de&btnG=Google-Suche&meta=lr%3Dlang_de%7Clang_en

Bezug
                
Bezug
Summenformel für Potenzreihe gesucht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:14 Do 12.08.2004
Autor: leaven

Hallo Josef,

danke für Deine Antwort!
Werde mir mal die PDF-Datei mal näher anschauen und nebenbei ein wenig "googeln".

Gruß
leaven


Bezug
        
Bezug
Summenformel für Potenzreihe gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Fr 20.08.2004
Autor: matherammel

HI!
Habe die Summe mal in Maple (Computeralgebrasystem) eingegeben, welches mir üblicherweise dann die Summenformel verrät. Hier kannte es keine. Also existiert wahrscheinlich keine.
Grüße!

Bezug
                
Bezug
Summenformel für Potenzreihe gesucht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 Fr 20.08.2004
Autor: leaven

Hallo matherammel,

zunächst vielen Dank für Deine Antwort!

Ich gebe Dir Recht, wenn ein so mächtiges Programm wie MAPLE keine Summenformel gefunden hat, das dies bedeuten kann, dass wahrscheinlich keine Lösung existiert - und genau das hatte ich befürchtet.

Josef war so freundlich mir bei diesem Problem zu helfen. Allerdings haben die beiden Links seinerseits und das Googeln meinerseits mich der Lösung leider nicht näher gebracht. Ich habe bei den vielen veröffentlichten Facharbeiten [buchlesen], Dissertationen usw. keine Summenformel entdecken können, bei der genau dieser Fall in irgendeiner Weise behandelt wird.

Somit gibt es mal wieder die drei Möglichkeiten:
1. Es lässt sich keine Formel dafür konstruieren.
2. Die Formel existiert, wurde aber noch nicht bewiesen/veröffentlicht.
3. Man wird sich wohl selbst daran versuchen müssen! [keineahnung]

Dies ist schon mein zweites ungelöstes math. Problem in diesem Forum. Vielleicht hätte ich David Hilbert wohl doch besser davon überzeugen sollen, diese auf seine berühmte Liste der []23 ungelösten Probleme der Mathematik, dass wären es 25 Probleme...;-)

Auf jeden Fall, Danke für Eure Hilfe!

Gruß
leaven


Bezug
        
Bezug
Summenformel für Potenzreihe gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 18:43 Fr 20.08.2004
Autor: Stefan

Hallo leaven!

Vielleicht sollten wir dein Problem einmal mathematisch präzisieren, bevor wir es in Hilbert's Liste aufnehmen. ;-)

Sehe ich das richtig: Du willst wissen, ob es ein Polynom $p(X) [mm] \in \IQ[X]$ [/mm] gibt mit

[mm] $\sum\limits_{k=1}^n k^k [/mm] = p(n)$.

Falls du das nicht wissen wolltest: Was dann, mathematisch präzise ausgedrückt?

Falls du das wissen wolltest: Ein solches Polynom kann es nicht geben. Das sieht man schon am asymptotischen Verhalten. Für genügend große $n$ gilt auf jeden Fall für ein festes, aber beliebiges Polynom $p(X) [mm] \in \IQ[X]$ [/mm] die Beziehung:

[mm] $\sum\limits_{k=1}^n k^k [/mm] > p(n)$.

Liebe Grüße
Stefan

Bezug
                
Bezug
Summenformel für Potenzreihe gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:16 Mo 23.08.2004
Autor: leaven

Hallo stefan,

herzlichen Dank für Deine Antwort...
...und sorry [anbet], dass ich mich erst jetzt und so spät gemeldet habe.

Um Deine Frage zu beantworten: Ja, ich wollte wissen, ob es ein Polynom [mm] p(X) \in \IQ[X] [/mm] gibt, für das gilt

[mm] \sum\limits_{k=1}^n k^k = p(n) [/mm]

Wenn ich es also richtig verstanden habe, ist die Konstruktion eines solchen Polynoms nicht möglich.

Auf die Gefahr hin, dass ich's immer noch nicht kapiert habe:
Lässt sich Deine Aussage auch darauf übertragen, dass es somit auch für

[mm] \sum\limits_{k=1}^{\infty} \frac{1}{k^k} = 1{,}291285997...[/mm]

keine Summenformel geben kann?
(...oder sollte diese Frage besser in einem neuen Strang diskutiert werden?)

Gruß
leaven


Bezug
                        
Bezug
Summenformel für Potenzreihe gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 00:12 Di 24.08.2004
Autor: Stefan

Hallo leaven!

> herzlichen Dank für Deine Antwort...
>  ...und sorry [anbet], dass ich mich erst jetzt und so spät
> gemeldet habe.

Kein Problem. :-)

> Um Deine Frage zu beantworten: Ja, ich wollte wissen, ob es
> ein Polynom [mm]p(X) \in \IQ[X][/mm] gibt, für das gilt
>  
> [mm]\sum\limits_{k=1}^n k^k = p(n)[/mm]
>  Wenn ich es also richtig
> verstanden habe, ist die Konstruktion eines solchen
> Polynoms nicht möglich.

Stimmt. [daumenhoch]

Wegen

[mm] $\lim\limits_{n \to \infty} \frac{p(n)}{\sum\limits_{k=1}^n k^k} [/mm] = 0$.
  

> Auf die Gefahr hin, dass ich's immer noch nicht kapiert
> habe:

Wenn du es nicht genau verstanden hast, dann frage bitte unbedingt  nach. Wenn sich hier jemand blamiert, dann bin das allerhöchstens ich. ;-)

>  Lässt sich Deine Aussage auch darauf übertragen, dass es
> somit auch für
>  
> [mm]\sum\limits_{k=1}^{\infty} \frac{1}{k^k} = 1{,}291285997...[/mm]
>  
> keine Summenformel geben kann?

Nein, das lässt sich so nicht übertragen.

>  (...oder sollte diese Frage besser in einem neuen Strang
> diskutiert werden?)

Wir können es auch hier lassen, denn es ist ja stark themenverwandt. Deine Frage ist also:

Gibt es ein Polynom $p(x) [mm] \in \IQ[X]$ [/mm] mit

[mm] $\sum\limits_{k=1}^{n} \frac{1}{k^k} [/mm] =p(n)$

für alle $n [mm] \in \IN$? [/mm]

Das muss ich mir jetzt erst einmal anschauen...

Liebe Grüße
Stefan


Bezug
                        
Bezug
Summenformel für Potenzreihe gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 00:18 Di 24.08.2004
Autor: Stefan

Hallo leaven!

>  Lässt sich Deine Aussage auch darauf übertragen, dass es
> somit auch für
>  
> [mm]\sum\limits_{k=1}^{\infty} \frac{1}{k^k} = 1{,}291285997...[/mm]
>  
> keine Summenformel geben kann?

Also: Es kann offenbar kein Polynom $p(X) [mm] \in \IQ[X]$ [/mm] geben mit

[mm]\sum\limits_{k=1}^{n} \frac{1}{k^k} =p(n)[/mm].

Denn es gilt notwendigerweise

[mm] $\lim\limits_{n \to \infty} |p(n)|=+\infty$, [/mm]

während aber

$0 [mm] \le \sum\limits_{k=1}^{\infty} \frac{1}{k^k} \le \sum\limits_{k=1}^{\infty} \frac{1}{k^2} [/mm] < [mm] \infty$ [/mm]

gilt.

Liebe Grüße
Stefan

Bezug
                                
Bezug
Summenformel für Potenzreihe gesucht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:01 Di 24.08.2004
Autor: leaven

Hallo stefan,

[happy][happy] VIELEN DANK FÜR DEINE ANTWORTEN UND HILFE!!!! [happy][happy]

Du hast mir sehr geholfen!!! Da ich nicht wusste, wen ich mit dieser Fragerei "nerven" sollte, dachte ich mir: probier es mal beim MATHEFORUM! (...da werden Sie geholfen...)
Dass Dir Du wegen mir schon mal die Nacht um die Ohren schlägst, ist super!

Nochmals vielen Dank!

...und mit den 25 Problemen für Hilbert's Liste wird wohl nix mehr draus... ;-)

Gruß
leaven


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]