matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Summenformel beweisen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Summenformel beweisen
Summenformel beweisen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summenformel beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Sa 29.07.2006
Autor: Alex_Pritzl

Aufgabe
Beweisen Sie folgende Aussage:
[mm] \vektor{n \\ 0}+\vektor{n \\ 1}+\vektor{n \\ 2}+...+\vektor{n \\ n}=2^n [/mm]

Hallo!

Meine Überlegungen:
Das Ganze per Induktion zu beweisen, erscheint mir im Moment am sinnvollsten.

Folgendes soll also bewiesen werden:
[mm] \summe_{k=0}^{n}\vektor{n \\ k}=2^n [/mm]

IA: n=0
[mm] \summe_{k=0}^{n}\vektor{n \\ k}=\vektor{0 \\ 0}=1 [/mm]

[mm] 2^0=1 [/mm]

[mm] \Box [/mm]

IS:
[mm] \summe_{k=0}^{n+1} \vektor{n \\ k}=\summe_{k=0}^{n} \vektor{n \\ k}+2^{n+1}=2^n+2^{n+1}=6^n [/mm]

Damit habe ich aber nichts bewiesen. Wie geht es richtig?

Danke.

Gruß
Alex


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Summenformel beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 Sa 29.07.2006
Autor: leduart

Hallo
Ist das wirklich ne Aufgabe aus Klasse 9 Realschule?
Dann kennst du sicher den binomoschen Lehrsatz für [mm] (a+b)^{n} [/mm]
Den kannst du aud [mm] (1+1)^{n} [/mm] anwenden und bist fertig.
Zu deinem Ansatz:

> Beweisen Sie folgende Aussage:
>  [mm]\vektor{n \\ 0}+\vektor{n \\ 1}+\vektor{n \\ 2}+...+\vektor{n \\ n}=2^n[/mm]
>  
> Hallo!
>  
> Meine Überlegungen:
>  Das Ganze per Induktion zu beweisen, erscheint mir im
> Moment am sinnvollsten.
>  
> Folgendes soll also bewiesen werden:
>   [mm]\summe_{k=0}^{n}\vektor{n \\ k}=2^n[/mm]
>  
> IA: n=0
>   [mm]\summe_{k=0}^{n}\vektor{n \\ k}=\vektor{0 \\ 0}=1[/mm]
>  
> [mm]2^0=1[/mm]

richtig!  

> [mm]\Box[/mm]
>  
> IS:
> [mm]\summe_{k=0}^{n+1} \vektor{n \\ k}=\summe_{k=0}^{n} \vektor{n \\ k}+2^{n+1}=2^n+2^{n+1}=6^n[/mm]

Das ist falsch! denn nach Induktionsvors. ist
[mm] $\summe_{k=0}^{n} \vektor{n \\ k}=2^{n}$ [/mm]
aber wieso kannst du die erste Summe so aufteilen?  
Die Induktionbeh ist doch :
[mm] $\summe_{k=0}^{n+1} \vektor{n+1 \\ k}=2^{n+1}$ [/mm]
Du musst also zeigen dass [mm] $2*\summe_{k=0}^{n} \vektor{n \\ k}=\summe_{k=0}^{n+1} \vektor{n+1 \\ k}$ [/mm] ist.
Gruss leduart

Bezug
                
Bezug
Summenformel beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:39 Sa 29.07.2006
Autor: Alex_Pritzl

Nein, das ist keine Aufgabe aus der 9. Klasse. Ich habe diese Aufgabe aus dem Königsberger Analysis I.

Danke.

Gruß
Alex

Bezug
                
Bezug
Summenformel beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:45 Sa 29.07.2006
Autor: Alex_Pritzl


>  [mm]2*\summe_{k=0}^{n} \vektor{n \\ k}=\summe_{k=0}^{n+1} \vektor{n+1 \\ k}[/mm]

Wie kommst du auf die 2 vor dem ersten Summenzeichen?

Bezug
                        
Bezug
Summenformel beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Sa 29.07.2006
Autor: leduart

Hallo drno
> >  [mm]2*\summe_{k=0}^{n} \vektor{n \\ k}=\summe_{k=0}^{n+1} \vektor{n+1 \\ k}[/mm]

>
> Wie kommst du auf die 2 vor dem ersten Summenzeichen?

[mm] \summe_{k=0}^{n}=2^{n} [/mm] nach Ind. Vors,, [mm] 2*2^{n}=2^{n+1} [/mm]
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]