matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Summen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - Summen
Summen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summen: Abschätzung
Status: (Frage) beantwortet Status 
Datum: 16:16 Fr 13.04.2012
Autor: bandchef

Aufgabe
Ich soll die exakte Schranke dieser Summe herausfinden: [mm] $2^{n-3}+\sum_{k=0}^{n-4}(2^k(n-k)^2)$ [/mm]



Meine Lösung:


Abschätzung nach unten:

[mm] $2^{n-3}+\sum_{k=0}^{n-4}(2^0(n-0)^2) [/mm] = ... = [mm] 2^{n-3} [/mm] + [mm] (n^3-3n^2)$ [/mm]


Abschätzung nach oben:

[mm] $2^{n-3}+\sum_{k=0}^{n-4}(2^{n-4}(n-(n-4))^2) [/mm] = ... = [mm] 2^{n-3}+16(n-)\cdot 2^{n-4}$ [/mm]



Wie komm ich da nun auf eine exakte Schranke? Darf man die hinteren Teile (die da so additiv dran hängen) weglassen?

        
Bezug
Summen: was ist gemeint ?
Status: (Antwort) fertig Status 
Datum: 20:32 Fr 13.04.2012
Autor: Al-Chwarizmi


> Ich soll die exakte Schranke dieser Summe herausfinden:
> [mm]2^{n-3}+\sum_{k=0}^{n-4}(2^k(n-k)^2)[/mm]
>  
>
> Meine Lösung:
>  
> Abschätzung nach unten:
>  
> [mm]2^{n-3}+\sum_{k=0}^{n-4}(2^0(n-0)^2) = ... = 2^{n-3} + (n^3-3n^2)[/mm]
>  
> Abschätzung nach oben:
>  
> [mm]2^{n-3}+\sum_{k=0}^{n-4}(2^{n-4}(n-(n-4))^2) = ... = 2^{n-3}+16(n-)\cdot 2^{n-4}[/mm]
>  
> Wie komm ich da nun auf eine exakte Schranke? Darf man die
> hinteren Teile (die da so additiv dran hängen) weglassen?


Hallo bandchef,

was soll mit "exakte Schranke" gemeint sein ?

So etwas wie kleinste obere oder größte untere Schranke ?

Da es sich um eine Summe mit endlich vielen Summanden
handelt, müsste aber beides einfach der exakt berechneten
Summe entsprechen. Es ginge also einfach darum, den
Summenterm zu vereinfachen, falls überhaupt möglich.

Oder sind da doch Grenzwerte involviert, also für [mm] n\to\infty [/mm]  ?
In diesem Fall ist die entstehende Reihe aber wohl ohnehin
divergent ...

LG   Al-Chwarizmi  


Bezug
        
Bezug
Summen: vereinfachte Summe
Status: (Antwort) fertig Status 
Datum: 10:03 Sa 14.04.2012
Autor: Al-Chwarizmi


> Ich soll die exakte Schranke dieser Summe herausfinden:
> [mm]2^{n-3}+\sum_{k=0}^{n-4}(2^k(n-k)^2)[/mm]


Hallo Bandchef,

ich habe mal rasch Mathematica auf den Term angesetzt.
Ergebnis der Vereinfachung (etwas anders notiert als von
Mathematica):

     $\ [mm] 7*2^{n-1}-n^2-4\,n-6\qquad\qquad (n\ge4)$ [/mm]

LG   Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]