matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisSummen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Summen
Summen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summen: Frage + Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:27 So 20.02.2005
Autor: synonymlos

Bei  [mm] \summe_{k=1}^{n}a(k). [/mm] ,was genau ist da das k? (und jetzt nicht mit "k" antworten ;) ) Was wäre es wenn man das ganze in die schreibweise in der man jede beliebige summe n ausrechnen kann umformen würde?
Bzw. kann jemand mal diese Aufgabe vorrechnen:

Wie muss a(k) gewählt werden, damit  
[mm] \summe_{k=1}^{n}(3k-5) [/mm] =  [mm] \summe_{k=5}^{34}a(k) [/mm]
gilt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

danke

        
Bezug
Summen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:59 So 20.02.2005
Autor: Christian

Hallo.

> Bei  [mm]\summe_{k=1}^{n}a(k).[/mm] ,was genau ist da das k? (und
> jetzt nicht mit "k" antworten ;) ) Was wäre es wenn man das
> ganze in die schreibweise in der man jede beliebige summe n
> ausrechnen kann umformen würde?

Ich bin mir nicht ganz sicher, ob ich deine Frage richtig verstehe, aber ohne die Abkürzung durch das Summenzeichen steht da explizit:
[mm]\summe_{k=1}^{n}a(k)=a(1)+a(2)+...+a(n)[/mm].
Wie Du siehst, spielt das k im expliziten Ausdruck überhaupt keine Rolle, es könnte schließlich dann auch j, i oder wie auch immer heißen. Deshalb nennt man k auch "Laufvariable", weil sie alle Werte von 1 (der unteren Grenze) bis hin zu n (der oberen Grenze) durchläuft.

Hoffe, daß ich etwas helfen konnte,

Gruß,
Christian

Bezug
        
Bezug
Summen: Antwort zu a(k)
Status: (Antwort) fertig Status 
Datum: 12:12 Mo 21.02.2005
Autor: Zwerglein

Hi, synonymlos,

die zweite Frage ist ein wenig knifflig.
Schreibt man sich die erste Summe auf, erhält man:
(3-5) + (6-5) + (9-5) + (12-5) + (15-5) + ... + (3n-5); das sind "n" Summanden.
Die zweite Reihe hat 30 Summanden (von k=5 bis k=34: das gibt 30 Stück!); demnach ist schon mal n=30.
Also ergibt sich (wieder für die erste Reihe; die Klammern diesmal ausgerechnet):
(-2) + 1 + 4 + 7 + 10 + ... + 85.

Man sieht: Die Summanden unterscheiden sich immer um 3. Daher auch "3k".

Nun zur 2. Reihe: Auch hier sollen sich die Summanden jeweils um 3 unterscheiden; daher auch hier: "3k".
Aber: Für k=5 muss der 1. Summand wie oben -1 sein:
3*5 - x = -2  <=> x=-17.

Daher heißt die 2. Reihe: [mm] \summe_{k=5}^{34} [/mm] (3k-17)

mfG!
Zwerglein


Bezug
        
Bezug
Summen: danke + formel
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:21 Mo 21.02.2005
Autor: synonymlos

danke für die antworten, ich konnte das was ich wissen wollte da herausziehn, vor allem danke für die aufgabenlösung, wusste gar nicht was ich mit dem teil anfangen sollte.
@Christian19: danke für die hilfe aber man kann das sigma auch noch anders auflösen. Zumindest geht das bei arithmetischen, geometrischen usw. reihen.
Hier zur demonstration die formel für arithmetische reihen:

S(n) =  [mm] \summe_{k=1}^{n}a(k) [/mm] = n/2 * (a(1)+a(n))

So könnte man zum Beispiel die Summe (hier S genannt) der natürlichen zahlen von 1 - 1000 in einem Einzelschritt berechnen:

S(n) = 1+2...+1000 =  [mm] \summe_{k=1}^{1000}k [/mm] = 1000/2 * (1 + 1000) = 500500

danke nochmal für die antworten

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]