matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenSummen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Summen
Summen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summen: Übungsaufgabe
Status: (Frage) beantwortet Status 
Datum: 21:35 Do 09.12.2004
Autor: mathenullhoch2

Hi Leute!

Ich habe hier eine Aufgabe, die einfach zu sein scheint,
aber ich komme irgendwie nicht dahinter.

Augabe:

Berechnen Sie:

[mm] \summe_{k=1}^{n} \summe_{j=1}^{k}(j-k). [/mm]

Das wars auch schon.

Aber ich raffe schon seit 2 Tage wie das gehen soll.

Habt ihr vielleicht ein paar Tipps für mich.

        
Bezug
Summen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:09 Do 09.12.2004
Autor: cremchen

Halli hallo!

> [mm]\summe_{k=1}^{n} \summe_{j=1}^{k}(j-k). [/mm]

Diese Aufgabe hatten wir hierschoneinmal!
Die Lösung dazu findest du hier:
Berechnung einer Summe

Liebe Grüße
Ulrike

Bezug
                
Bezug
Summen: Fehler
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:18 Do 09.12.2004
Autor: mathenullhoch2

Hallo cremchen.

Der Link, den du mir gegeben hast geht nicht

es kommt  "Fehlerhafter Aufruf"

Bezug
                        
Bezug
Summen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:21 Do 09.12.2004
Autor: Marcel

Hallo zusammen,

ich habe den Link (in Cremchens Antwort) verbessert, nun sollte er funktionieren!

Viele Grüße,
Marcel

Bezug
        
Bezug
Summen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:47 Do 09.12.2004
Autor: Xenia

die Summe lässt sich schreiben:

[mm] \summe_{k=1}^{n} \summe_{j=1}^{k}(j - k) = \summe_{k=1}^{n}(\summe_{j=1}^{k}j - \summe_{j=1}^{k}k)[/mm].

die Potenzsumme [mm]\summe_{j=1}^{k}j = \bruch{k(k+1)}{2}[/mm].
du kommst schon alleine weiter, oder?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]