matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungSummen- und Pfadregel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitsrechnung" - Summen- und Pfadregel
Summen- und Pfadregel < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summen- und Pfadregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 Mo 29.12.2008
Autor: Sara

Hallo allerseits,

könntet ihr mir sagen, wann man die Summenregel und wann man die Pfadregel anwendet. Ich weiß nämlich den Unterschied nicht.


LG
SARA

        
Bezug
Summen- und Pfadregel: Beispiel
Status: (Antwort) fertig Status 
Datum: 22:01 Mo 29.12.2008
Autor: barsch

Hi,

> Hallo allerseits,
>  
> könntet ihr mir sagen, wann man die Summenregel und wann
> man die Pfadregel anwendet. Ich weiß nämlich den
> Unterschied nicht.

Rückfrage: Du weißt, was die Summenregel und Pfadregel ist, weißt aber nicht, wann du welche der beiden Regeln anwendest?

Ich will es mal anschaulich an einem Beispiel zu erklären versuchen:

Nehmen wir an, wir haben zwei Würfel. Die jeweils gegenüberliegenden Seiten haben die gleiche Farbe. Also gibt es drei Farben: Nehmen wir an [mm] \text{\red{r}ot}, \text{\blue{b}lau},\text{\green{g}ruen}. [/mm]

Gefragt ist nun nach der Wahrscheinlichkeit, zwei gleiche Farben zu würfeln.

Die gleiche Farbe würfeln wir, wenn wir

mit dem 1. Würfel [mm] \red{r} [/mm] und mit dem 2. Würfel [mm] \red{r} [/mm] werfen,

oder

mit dem 1. Würfel [mm] \blue{b} [/mm] und mit dem 2. Würfel [mm] \blue{b} [/mm] werfen,

oder

mit dem 1. Würfel [mm] \green{g} [/mm] und mit dem 2. Würfel [mm] \green{g} [/mm] werfen.

Wir haben also die Ereignisse [mm] (\red{r},\red{r}), (\blue{b},\blue{b}) [/mm] und [mm] (\green{g},\green{g}). [/mm]

Die Wahrscheinlichkeit P für ein beliebiges Ereignis bestimmst du, indem du die Wahrscheinlichkeiten für die betreffende Stufe bzw. den betreffenden Zweig des Experiments entlang eines Pfades multiplizierst. (Pfadregel!)

Das bedeutet in diesem Fall:

[mm] P(\red{r},\red{r})=\bruch{1}{3}*\bruch{1}{3} [/mm] (Du kannst dir den Baum ja einmal aufzeichnen)

[mm] P(\blue{b},\blue{b})=\bruch{1}{3}*\bruch{1}{3} [/mm]

[mm] P(\green{g},\green{g})=\bruch{1}{3}*\bruch{1}{3} [/mm]

Jetzt kommt die Summenregel: Wenn ein Ereignis aus mehreren Elemtarereignissen besteht,...

Das Ereignis zwei gleiche Farben zu würfeln, besteht aus den Elementarereignissen 2x rot, 2x blau, 2x gruen würfeln

so erhälst du die Gesamtwahrscheinlichkeit...

also: zwei gleiche Farben zu würfeln

durch Addition der Einzelwahrscheinlichkeiten.

P(zwei gleiche Farben) [mm] =P(\red{r},\red{r})+P(\blue{b},\blue{b})+P(\green{g},\green{g})=\bruch{1}{3}*\bruch{1}{3}+\bruch{1}{3}*\bruch{1}{3}+\bruch{1}{3}*\bruch{1}{3}=... [/mm]

Ich hoffe, ich konnte ein wenig Licht ins Dunkel bringen.

MfG barsch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]