matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenSumme von Reihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Summe von Reihen
Summe von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:50 Mi 21.07.2010
Autor: m0ppel

Wie muss ich den Konkreten Grenzwert einer Reihe (bzw. dessen Summe) berechnen?

Ich weiß, wie ich die Summe einer unendlichen geometrischen Reihe zu bestimmen habe:
[mm] \summe_{i=0}^{\infty} k^n [/mm] = [mm] \bruch{1-k^{n+1}}{1-k} [/mm]

Aber wie muss ich das nun machen, wenn ich diese Reihe gegeben habe:
[mm] \summe_{n=1}^{\infty} \bruch{1}{4n^2-1} [/mm]
und dessen Summe bestimmen soll?



        
Bezug
Summe von Reihen: Teleskopsumme
Status: (Antwort) fertig Status 
Datum: 14:04 Mi 21.07.2010
Autor: Roadrunner

Hallo m0ppel!


Führe zunächst eine MBPartialbruchzerlegung durch:
[mm] $$\bruch{1}{4n^2-1} [/mm] \ = \ [mm] \bruch{1}{(2n+1)*(2n-1)} [/mm] \ = \ [mm] \bruch{A}{2n+1}+\bruch{B}{2n-1}$$ [/mm]

Anschließend bzw. damit erhältst Du eine sogenannte "Teleskopsumme", bei der sich fast alle Summanden eliminieren.


Gruß vom
Roadrunner


PS: Diese Reihe hat nichts mit der Formel der geometrischen Reihe zu tun.


Bezug
                
Bezug
Summe von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 Mi 21.07.2010
Autor: m0ppel

Das hab ich nun gemacht: dann kommt heraus
[mm]\bruch{1}{4n^2-1} = \bruch{-1}{4n+2} + \bruch{1}{4n-2}[/mm]
stetze ich nun ein:
[mm] \summe_{n=1}^{\infty} (\bruch{1}{4n-2} + \bruch{-1}{4n+2}) = \bruch{1}{2} - \bruch{1}{6} + \bruch{1}{6} - \bruch{1}{10} + \bruch{1}{10} -\bruch{1}{14} ...[/mm] = [mm] \bruch{1}{2} [/mm]
Jedoch weiß ich hier nicht,  ob da noch was fehlt, da sich ja vom letzten ausgeführtem Schritt der 2. Bruch nicht wegkürzt oder kann man das vernachlässigen, da n gegen unendlich geht und somit der letzte Bruch unberücksichtigt werden kann?
lg

Bezug
                        
Bezug
Summe von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:35 Mi 21.07.2010
Autor: fred97


> Das hab ich nun gemacht: dann kommt heraus
> [mm]\bruch{1}{4n^2-1} = \bruch{-1}{4n+2} + \bruch{1}{4n-2}[/mm]
>  
> stetze ich nun ein:
>  [mm]\summe_{n=1}^{\infty} (\bruch{1}{4n-2} + \bruch{-1}{4n+2}) = \bruch{1}{2} - \bruch{1}{6} + \bruch{1}{6} - \bruch{1}{10} + \bruch{1}{10} -\bruch{1}{14} ...[/mm]
> = [mm]\bruch{1}{2}[/mm]
>  Jedoch weiß ich hier nicht,  ob da noch was fehlt, da
> sich ja vom letzten ausgeführtem Schritt der 2. Bruch
> nicht wegkürzt oder kann man das vernachlässigen, da n
> gegen unendlich geht und somit der letzte Bruch
> unberücksichtigt werden kann?


Du mußt

                [mm] $\summe_{k=1}^{n} (\bruch{1}{4k-2} [/mm] - [mm] \bruch{1}{4k+2}) [/mm] $

berechnen und dann schauen, was bei n [mm] \to \infty [/mm] passiert

FRED


>  lg


Bezug
                                
Bezug
Summe von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:47 Mi 21.07.2010
Autor: m0ppel


> Du mußt
>
> [mm]\summe_{k=1}^{n} (\bruch{1}{4k-2} - \bruch{1}{4k+2})[/mm]
>  
> berechnen

das hab ich doch getan, oder?

> und dann schauen, was bei n [mm]\to \infty[/mm] passiert

hier würde ich dann ergänzen:

[mm]\summe_{n=1}^{\infty} (\bruch{1}{4n-2} + \bruch{-1}{4n+2}) = \bruch{1}{2} - \bruch{1}{6} + \bruch{1}{6} - \bruch{1}{10} + \bruch{1}{10} -\bruch{1}{14} ...[/mm]
= [mm]\bruch{1}{2} - \limes_{n\rightarrow\infty} \bruch{1}{4n+1}[/mm]
und da [mm] \limes_{n\rightarrow\infty} \bruch{1}{4n+1} [/mm] =0
folgt: [mm]\summe_{n=1}^{\infty} (\bruch{1}{4n-2} + \bruch{-1}{4n+2}) = \bruch{1}{2} [/mm]

oder was verstehe ich hier falsch?
Lg

Bezug
                                        
Bezug
Summe von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Mi 21.07.2010
Autor: fred97


> > Du mußt
> >
> > [mm]\summe_{k=1}^{n} (\bruch{1}{4k-2} - \bruch{1}{4k+2})[/mm]
>  >  
> > berechnen
> das hab ich doch getan, oder?



Nein. Du sollst die endliche Summe [mm]\summe_{k=1}^{n} (\bruch{1}{4k-2} - \bruch{1}{4k+2})[/mm] berechnen

FRED

>
> > und dann schauen, was bei n [mm]\to \infty[/mm] passiert
>  
> hier würde ich dann ergänzen:
>
> [mm]\summe_{n=1}^{\infty} (\bruch{1}{4n-2} + \bruch{-1}{4n+2}) = \bruch{1}{2} - \bruch{1}{6} + \bruch{1}{6} - \bruch{1}{10} + \bruch{1}{10} -\bruch{1}{14} ...[/mm]
> = [mm]\bruch{1}{2} - \limes_{n\rightarrow\infty} \bruch{1}{4n+1}[/mm]
>  
> und da [mm]\limes_{n\rightarrow\infty} \bruch{1}{4n+1}[/mm] =0
> folgt: [mm]\summe_{n=1}^{\infty} (\bruch{1}{4n-2} + \bruch{-1}{4n+2}) = \bruch{1}{2}[/mm]
>  
> oder was verstehe ich hier falsch?
>  Lg


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]