matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenSumme vereinfachen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Summe vereinfachen
Summe vereinfachen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:31 Mo 24.09.2007
Autor: Tauphi

Hallo,

ich habe eine wahrscheinlich etwas blöde Frage, aber ich komme bei der Auflösung einer Summe nicht richtig weiter ... Und zwar kann man, wenn man Summen ausrechnen will, die Apperate so umstellen, dass das alles recht einfach geht...

Zb bei der Addition...
[mm] \summe_{x=1}^{666}(5+x) [/mm]

Kann ich schreiben...
[mm] \summe_{x=1}^{666}(5)+\summe_{x=1}^{666}(x)=5*666 [/mm] + [mm] \bruch{666*667}{2} [/mm]

Genauso bei der Multiplikation...
[mm] \summe_{x=1}^{666}(5*x) [/mm]

Kann ich schreiben...
[mm] 5*\summe_{x=1}^{666}(x)=5*\bruch{666*667}{2} [/mm]

Das gleiche funzt auch bei der Subtraktion ...
Aber hier jetzt mein Problem, wie mache ich das bei einer Division? O.o

Ich krieg im folgenden die 5 nicht aus der Summe heraus, ohne ein falsches Ergebnis zu bekommen:

[mm] \summe_{x=1}^{666}(\bruch{5}{x}) [/mm]

Gibt es dafür irgendwie eine besondere Regel ? Eine kurze Abhilfe wäre super :)

Danke im voraus

Viele Grüße
Andi

        
Bezug
Summe vereinfachen: ausklammern
Status: (Antwort) fertig Status 
Datum: 21:35 Mo 24.09.2007
Autor: Loddar

Hallo Andi!


Es gilt ja [mm] $\bruch{5}{x} [/mm] \ = \ [mm] 5*\bruch{1}{x}$ [/mm] . Damit kannst Du die Reihe wie folgt umformen:

[mm] $$\summe_{x=1}^{666}\bruch{5}{x} [/mm] \ = \ [mm] 5*\summe_{x=1}^{666}\bruch{1}{x}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Summe vereinfachen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:46 Mo 24.09.2007
Autor: Tauphi

Hallo Loddar,

danke für die Antwort. Das mit dem Ausklammern klingt schon mal gut ... Allerdings weiss ich nun nicht, wie ich dann folgende Summe ausrechne:

[mm] \summe_{x=1}^{666}\bruch{1}{x} [/mm]

Gibt es dafür auch eine bestimmte Formel ähnlich wie die gaußsche Summenformel [mm] \bruch{n*(n+1)}{2} [/mm] ? Falls ja, gibt es darüberhinaus noch mehr und unter welchem Stichpunkt kann ich die alle nachlesen ? Ich kenn nur diese eine, leider ...

Viele Grüße
Andi

Bezug
                        
Bezug
Summe vereinfachen: Näherungsformel
Status: (Antwort) fertig Status 
Datum: 21:53 Mo 24.09.2007
Autor: Loddar

Hallo Andi!


Die (unendliche) Reihe [mm] $\summe_{k=1}^{\infty}\bruch{1}{k}$ [/mm] ist bekannt als "harmonische Reihe".
Für endliche Summenendwerte habe ich folgende []Näherungsformel gefunden:

$$S(n) \ = \ [mm] \summe_{k=1}^{n}\bruch{1}{k} [/mm] \ [mm] \approx [/mm] \ [mm] \ln(n)+\gamma [/mm] \ = \ [mm] \ln(n)+0.5772...$$ [/mm]

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]