Summe, geom. Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:15 Di 26.05.2009 | Autor: | Tobus |
Aufgabe | Ein wichtiger Begriff aus der physikalischen Chemie ist die Zustandssumme [mm] Z=\summe_{n}^{}e^{\bruch{-E_{n}}{k*T}} [/mm] [...]
a) Berechnen sie unter Verwendung der Summenformel für die geom. Reihe die Zustandssumme für einen harmonischen Oszillator. Bei diesem gilt für die Energieniveaus [mm] E_{n}=(n+0,5)*h*v [/mm] und N [mm] \in N_{0} [/mm] |
Hallo,
ich habe nun [mm] E_{n} [/mm] in Z eingesetzt und bekomme:
[mm] Z=\summe_{n}^{}e^{\bruch{-(n+0,5)*h*v}{k*T}}
[/mm]
Nun frage ich mich, was mir hier die geom. Reihe bringen soll. Ich habe zum einen nicht immer ganzzahlige Exponenten, zum Anderen eine Summe die nicht von 0 bis [mm] \infty [/mm] läuft.
Wie komme ich weiter ?
DANKE
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:32 Di 26.05.2009 | Autor: | abakus |
> Ein wichtiger Begriff aus der physikalischen Chemie ist die
> Zustandssumme [mm]Z=\summe_{n}^{}e^{\bruch{-E_{n}}{k*T}}[/mm] [...]
>
> a) Berechnen sie unter Verwendung der Summenformel für die
> geom. Reihe die Zustandssumme für einen harmonischen
> Oszillator. Bei diesem gilt für die Energieniveaus
> [mm]E_{n}=(n+0,5)*h*v[/mm] und N [mm]\in N_{0}[/mm]
> Hallo,
> ich habe nun [mm]E_{n}[/mm] in Z eingesetzt und bekomme:
> [mm]Z=\summe_{n}^{}e^{\bruch{-(n+0,5)*h*v}{k*T}}[/mm]
[mm]=\summe_{n}^{}e^{(\bruch{-n*h*v}{k*T}-\bruch{0,5*h*v}{k*T})}[/mm]
[mm]=\summe_{n}^{}e^{\bruch{-n*h*v}{k*T}}:e^{\bruch{0,5*h*v}{k*T}}[/mm]
[mm] =\bruch{1}{e^{\bruch{0,5*h*v}{k*T}}}\summe_{n}^{}(e^{\bruch{-*h*v}{k*T}})^n
[/mm]
Sieht es jetzt wie eine geometrische Reihe aus?
>
> Nun frage ich mich, was mir hier die geom. Reihe bringen
> soll. Ich habe zum einen nicht immer ganzzahlige
> Exponenten, zum Anderen eine Summe die nicht von 0 bis
> [mm]\infty[/mm] läuft.
Hallo,
ich vermute, die verwendete Summenschreibweise ist nur ein etwas schlampiger Ausdruck für "Summe über alle n".
Und selbst wenn das irgendwann abbrechen sollte, sind die letzten Summanden meist vernachlässigbar klein.
Gruß Abakus
>
> Wie komme ich weiter ?
>
> DANKE
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:51 Di 26.05.2009 | Autor: | Tobus |
Ahh ok VIELEN DANK
|
|
|
|